Christian Weiland, M.Sc.


Eissendorfer Str. 40

Building N, Room 1.082

21073 Hamburg

Phone +49 40 42878 - 4644

Mail Christian Weiland


Research

For the optimisation of stirred tank reactors (STR), simulative studies are conducted. The focus is on the determination of the mixing efficiency and the identification of compartments in such vessels. The simulations are carried out utilising the Lattice Boltzmann Method. The further analyses are done with Lagrangian methods, namely the calculation of the arising Finite Time Lyapunov Exponent, the occurring Finite Time Lyapunov Mixing Intensity and the estimation of the network in the observed vessels which directly delivers knowledge about the positions of compartments.

The information retrieved from the Lagrangian analyses is processed further to develop a model describing the observed STR. Additionally, the information concerning the arising deformation of fluid elements, quantified by the Finite Time Lyapunov Exponent, is used for the modelling of multiphase phenomena such as bubble breakup.

Education

Undergraduate and Graduate Teaching Assistant

  • Fundamentals of Fluid Mechanics (Fluid Mechanics I)

  • Fluid Mechanics in Process Engineering (Fluid Mechanics II)

  • Process Design Project (Projektierungskurs), Winter term 2020/2021

Supervised Theses

  • Computational Study of the Influence of Stirrer Configurations on the Lagrangian Mixing in a Stirred Tank Rector (working title), Yvonne Schade, Master’s Thesis, ongoing

  • Numerische Untersuchung des Einflusses ausgewählter Rührervariationen auf das Strömungsverhalten innerhalb eines Rührkesselreaktors, Boran Salli, Bachelor’s Thesis (in supervision coorperation with Ingrid Haase, M.Sc.), ongoing

  • Comparison of the Lattice Boltzmann Method and Finite Volume Method in Continuously Operated Static Mixers - a CFD Benchmark Study, Roman Neubauer, Master's Thesis (in supervision coorperation with Torben Frey, M.Sc.), April 2023

  • Auslegung und Bau eines Wassermühlrades im Labormaßstab zur Ermittlung der abgegeben Leistung im Originalmaßstab unter Berücksichtigung ausgewählter dimensionsloser Kennzahlen (working title), Jarik Koenig, Project Work (in supervision coorperation with Felix Kexel, M.Sc.), ongoing

  • Direkte Numerische Simulation des Grenzflächen-Stofftransports in Blasenströmungen mithilfe einer VOF-Methode, Roberto Flores Cavero, Master's Thesis (in supervision coorperation with PD Dr.-Ing habil. Yan Jin), July 2022

  • Untersuchung von Transportbarrieren innerhalb eines kontinuierlichen Rührkesselreaktors unter Verwendung dreidimensionaler Lagrangescher Kohärenter Strukturen, Eike Steuwe, Master's Thesis (in supervision coorperation with Prof. Dr. Alexandra von Kameke), May 2022

  • Ermittlung der Leistungsabgabe eines Wassermühlenrades unter Verwendung numerischer Strömungssimulation, Alexander Hanke, Project work, April 2022

  • Charakterisierung der Totzeitverteilung in Rührkesselreaktoren mittels numerischer Strömungssimulation mit der Lattice-Boltzmann Methode, Mustafa Salli, Bachelor's Thesis, March 2022

  • Mehrzieloptimierung einer durchströmten offenen Struktur unter Anwendung des diskreten Adjungiertenverfahrens mittels numerischer Strömungssimulation, Mona Abbas Sayed Omar, Master's Thesis (in supervision coorperation with Claas Spille, M.Sc.), January 2022

  • Nichtinvasive Bestimmung des portosystemischen Druckgradienten nach TIPS-Implantation: Vergleich von stationären und transienten numerischen Strömungssimulationen, Muhammad Ismahil, Master's Thesis (in supervision coorperation with Dr.-Ing. Marko Hoffmann and close coorperation with Dr. med. Christoph Riedel (UKE)), December 2021

  • Analyse von Einflussparametern auf den portosystemischen Druckgradienten nach TIPS-Implantation mittels numerischer Strömungssimulation, Eleonora Abu Rashed, Master's Thesis (in supervision coorperation with Dr.-Ing. Marko Hoffmann and close coorperation with Dr. med. Christoph Riedel (UKE)), May 2021

  • Geometrieoptimierung unter Nutzung numerischer Simulation mittels Verwendung des ANSYS Adjoint Solvers, Mona Abbas Sayed Omar, Project Work (in supervision coorperation with Claas Spille, M.Sc.), March 2021

  • Numerische Simulation der Fluiddynamik unter Berücksichtigung der Mischcharakteristik eines nicht-newtonschen Fluides innerhalb einer industriellen Mischapparatur, Simon Abraha, Master's Thesis, July 2020

  • Bewertung einer neuen Methode zur nichtinvasiven Messung von dynamischen Temperaturverläufen mittels numerischer Strömungssimulation, Hanno Hagenström, Master's Thesis, Dezember 2019

  • Prediction of the Mass Transfer Coefficient Based on the Eddy Cell Model for an Aerated Stirred Tank Reactor under Multiple Operating Conditions, Hendrick Jansen, Master's Thesis, November 2019

Oral and Poster Presentations

Oral Presentations

  • Kursula, L.; Weiland, C.; Perçin, Z.; Kexel, F.; Bubenheim, P.; Hoffmann, M.; Terasaka, K.; Liese, A.; Schlüter, M.: "Experimental Quantification of Local Counterdiffusion Effects on the Gas-Liquid Mass Transfer Performance on a Microscale", 27th International Congress of Chemical and Process Engineering 2024, Prague, Czech Republic, oral presentation
  • Weiland, C.; von Kameke, A., Hoffmann, M., Schlüter, M.: "Development and Implementation of a Lagrangian Model to Estimate the Bubble Breakup in Bubbly Flow", 27th International Congress of Chemical and Process Engineering 2024, Prague, Czech Republic, oral presentation

  • Weiland, C.; von Kameke, A., Schlüter, M.: "Trajectory-Based Breakup Modelling for Dense Bubbly Flows", 28th International Symposium on Chemical Reaction Engineering 2024, Turku/Åbo, Finland, oral presentation

  • Weiland, C.; Steuwe, E.; von Kameke, A.; Hoffmann, M.; Schlüter, M.: “Identification of Compartments in Stirred Tank Reactors by Analysing Lagrangian Coherent Structures From Velocity Fields Derived by the Lattice-Boltzmann-Method”, 11th International Conference of Multiphase Flow 2023, Kobe, Japan, oral presentation

  • Weiland, C.; Hofmann, S.; Fitschen, J.; von Kameke, A.; Hoffmann, M.; Schlüter, M.: "Numerische Simulation Lagrangescher Partikeltrajektorien und Charakterisierung des Partikelfolgevermögens in einem 3 L Rührkesselreaktor", ProcessNet Jahrestreffen CFD, Mischen und Agglomeration 2022, Leipzig, Germany, oral presentation

  • Hofmann, S.; Weiland, C.; Fitschen, J.; von Kameke, A.; Hoffmann, M.; Schlüter, M.: "Vergleich von experimentellen und numerischen Untersuchungen zur Abschätzung des Folgevermögens verschiedener Lagrange’scher Partikel in der Bioreaktorströmung", ProcessNet Jahrestreffen CFD, Mischen und Agglomeration 2022, Leipzig, Germany, oral presentation

Poster Presentations

  • Hofmann, S.; Weiland, C.; GopalSingh, P.; Kamp, M.; Fitschen, J.; v. Kameke, A.; Hoffmann, M.; Schlüter, M.: "Experimental and numerical determination of lifelines in a 3 L, 200 L and 15000 L stirred tank reactor to estimate the flow-following capability of Lagrangian Sensor Particles", MIXING XXVII, North American Mixing Forum (NAMF), Online Conference 2022, virtual poster presentation

  • Weiland, C.; Fitschen, J.; Hoffmann, M.; Schlüter, M.:"Numerical Simulation and Validation of the Bubble Size Distribution in an Aerated Stirred Tank Reactor", ProcessNet Jahrestreffen Mehrphasenströmungen & CFD 2021, virtual poster presentation

  • Weiland, C.; Hoffmann, M.; Schlüter, M.: "Numerical Simulation of the Mixing Time and Pathlines of Lagrangian Tracer Particles in a Stirred Tank Reactor", Hamburg-Bochumer Mehrphasensymposium, 2020, virtual poster presentation

Awards
  • EFCE Best Lecture Award 2024 for the presentation on the "Development and Implementation of a Lagrangian Model to Estimate the Bubble Breakup in Bubbly Flow" during the 27th International Congress of Chemical and Process Engineering (CHISA) in Prague, Czech Republic

Publications

[172554]
Title: Lagrangian sensors in a stirred tank reactor: Comparing trajectories from 4D-Particle Tracking Velocimetry and Lattice-Boltzmann simulations.
Written by: Hofmann, S.; Weiland, C.; Fitschen, J.; von Kameke, A., Hoffmann, M.; Schlüter, M.
in: <em>Chemical Engineering Journal</em>. (2022).
Volume: <strong>449</strong>. Number:
on pages:
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: https://doi.org/10.1016/j.cej.2022.137549
URL:
ARXIVID:
PMID:

Note:

Abstract: In this study, three-dimensional flow measurements by means of 4D-Particle Tracking Velocimetry (4D-PTV) are carried out in a laboratory-scale 3 L stirred tank reactor in order to investigate the flow-following behavior of two different inertial particle types, Polyethylene (PE) particles and alginate beads, at different impeller frequencies. Applied particles mimic Lagrangian sensor particles, which are intended to determine process parameters such as oxygen concentration at their corresponding position inside a bioreactor. Accompanying Lattice-Boltzmann Large Eddy Simulations (LB LES) provide additional information about the fluid flow and the difference in the trajectories between inertial and non-inertial particles. The data acquired from LB LES is validated with the experimental data by means of a Lagrangian and a Eulerian approach. In their tail, the probability distributions show higher Lagrangian velocities and accelerations for 4D-PTV data compared to LB LES data. Time-averaged Eulerian data is utilized to determine particle Reynolds numbers lower than 200. The Stokes number distributions show 10-fold higher values for the alginate beads than for PE particles, however, both particle types do not sufficiently meet the criterion of a flow-following Stokes number of St≤0.01. Generally, time-averaged results from LB LES are in good accordance to the 4D-PTV data. From the LB LES, a theoretical, maximum particle diameter of approx. 20 μm is determined, which meets the criterion of St≤0.01 throughout the reactor. This result implies that with current sensor particle technology it is not possible to meet the flow-following behavior and depict the lifelines of cells during a cultivation process. Therefore, further research is necessary to understand particle trajectories and to translate them into lifelines of cells.