Dr.-Ing. Thomas Wucherpfennig

Boehringer Ingelheim Pharma GmbH & Co. KG
Bioprocess Development Biologicals

Binger Strasse 173

55216 Ingelheim am Rhein

Phone +49 7351 54-144806

Mail Dr. Thomas Wucherpfennig


Thomas pursued the study of Biotechnology at the Technical University of Braunschweig, Germany, and Chemical Engineering at the University of Waterloo, Canada. He earned his PhD in Bioprocess Engineering from the Technical University of Braunschweig. Prior to joining Boehringer Ingelheim as a postdoctoral fellow in 2014, Thomas acquired valuable experience in the industrial biotech sector at Roche and Clariant. Since 2015, he has held various roles in cell culture process development at Boehringer Ingelheim and currently serves as a Senior Principal Scientist, spearheading late-stage process development. In addition, Thomas is a lecturer at FH Oberösterreich in Wels and TUHH – Hamburg University of Technology, His research focus is on bioprocess scale-up, bioreactor characterization, Process Analytical Technology (PAT), and cell culture process modeling.

Research Interests

  • Scale-up of bioprocesses
  • Bioreactor characterization
  • Computational Fluid Dynamics (CFD)
  • Process Analytical Technology (PAT)
  • Cell culture process modelling

Publications

[185006]
Title: Application of metabolic modeling for targeted optimization of high seeding density processes.
Written by: M. Brunner, K. Kolb, A. Keitel, F. Stiefel, T. Wucherpfennig, J. Bechmann, A. Unsoeld, J. Schaub
in: <em>Biotechnol Bioeng.</em>. (2021).
Volume: <strong>118</strong>. Number: (5),
on pages: Biotechnol Bioeng.;
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: https://doi.org/10.1002/bit.27693
URL:
ARXIVID:
PMID:

Note:

Abstract: Process intensification by application of perfusion mode in pre-stage bioreactors and subsequent inoculation of cell cultures at high seeding densities (HSD) has the potential to meet the increasing requirements of future manufacturing demands. However, process development is currently restrained by a limited understanding of the cell's requirements under these process conditions. The goal of this study was to use extended metabolite analysis and metabolic modeling for targeted optimization of HSD cultivations. The metabolite analysis of HSD N-stage cultures revealed accumulation of inhibiting metabolites early in the process and flux balance analysis led to the assumption that reactive oxygen species (ROS) were contributing to the fast decrease in cell viability. Based on the metabolic analysis an optimized feeding strategy with lactate and cysteine supplementation was applied, resulting in an increase in antibody titer of up to 47%. Flux balance analysis was further used to elucidate the surprisingly strong synergistic effect of lactate and cysteine, indicating that increased lactate uptake led to reduced ROS formation under these conditions whilst additional cysteine actively reduced ROS via the glutathione pathway. The presented results finally demonstrate the benefit of modeling approaches for process intensification as well as the potential of HSD cultivations for biopharmaceutical manufacturing.