Prof. Dr. Alexandra von Kameke


Department of Mechanical Engineering and Production

Hamburg University of Applied Sciences

Berliner Tor 21

20099 Hamburg

Phone +49 40 428 75 - 8624

Mail Prof. Dr. Alexandra von Kameke


 

Research Interest

  •  2D-Turbulence

  • Reaction-Diffusion-Advection Systems

  • Faraday Flow 

  • Vorticity generation

  • Global and local mixing dynamics and statistics

  • Turbulent inter-scale kinetic energy transfer

  • Pipe turbulence

  • Reaction front spreading

"Generation of energy and vorticity production by surface waves through two-dimensional turbulence effects"

We study energy condensation in quasi two-dimensional turbulence that is driven by surface waves. This physical mechanism is investigated with regard to its potential for energy production.
In two-dimensional turbulence the net energy is transferred from small scales to large scales. Energy condensation develops when large scale friction is low and energy piles up at large scales. In this way, energy condensation produces large ordered flow structures from disordered small scale forcing that drives the two-dimensional turbulence. It was shown only recently that two-dimensional turbulence can also be driven by surface waves [von Kameke et al. 2011].

However, it is unclear if two-dimensional turbulence and energy condensation can also be driven by more naturally occurring unordered forcing as for instance provided by oceanic surface waves. Further, it is not yet fully understood how non-breaking surface waves generate horizontal vorticity, and if the waves have to possess certain properties, i.e., if they need to be standing, non-linear or monochromatic [Francois et al. 2014, Filatov et al. 2016]. Additionally, the necessary boundary conditions for energy condensation are vague and need clarification. And, it needs to be addressed if the process of energy condensation is stable to the introduction of further sources of drag, i.e., when a turbine is plugged into the fluid flow in order to retrieve energy.

Here, these open points are to be investigated using a Faraday experiment [von Kameke et al. 2010, von Kameke et al. 2011, von Kameke et al. 2013]. The generation of vorticity by the surface waves and the influence of the boundary- and forcing- conditions on energy condensation will be studied as well as the velocity statistics. To this end the full unsteady three-dimensional velocity field at the water surface and below the water surface needs to be recorded which has not been investigated so far. The latest optical methods will be used, such as time-resolved high speed planar particle image velocimetry and time-resolved three-dimensional particle image velocimetry and particle tracking. The complete velocity data allows to doubtlessly verify, if the flow obtained in each case is two-dimensional and, if energy condensation takes place. Two-dimensionality is analyzed on the basis of energy and enstrophy spectra and spectral fluxes, calculated with the aid of a novel filtering method [Eyink, 1995, von Kameke et al. 2011, von Kameke et al. 2013]. Moreover, existing three- dimensional flow structures will be identified and characterized. The forcing, exerted by the surface waves on the fluid-particles, and the resulting vorticity generation will be quantified by measuring the fluid surface elevation simultaneously to the PIV measurements and the subsequent usage of Lagrangian methods [von Kameke et al. 2011, von Kameke et al. 2013, LaCasce 2008] that allow to correlate both movements. The objective of this study is to uncover a new effective mechanism to retrieve renewable energy and will broaden insight into surface wave physics and two-dimensional turbulence. 

 

Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 395843083

Publications

[172554]
Title: Lagrangian sensors in a stirred tank reactor: Comparing trajectories from 4D-Particle Tracking Velocimetry and Lattice-Boltzmann simulations.
Written by: Hofmann, S.; Weiland, C.; Fitschen, J.; von Kameke, A., Hoffmann, M.; Schlüter, M.
in: <em>Chemical Engineering Journal</em>. (2022).
Volume: <strong>449</strong>. Number:
on pages:
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: https://doi.org/10.1016/j.cej.2022.137549
URL:
ARXIVID:
PMID:

Note:

Abstract: In this study, three-dimensional flow measurements by means of 4D-Particle Tracking Velocimetry (4D-PTV) are carried out in a laboratory-scale 3 L stirred tank reactor in order to investigate the flow-following behavior of two different inertial particle types, Polyethylene (PE) particles and alginate beads, at different impeller frequencies. Applied particles mimic Lagrangian sensor particles, which are intended to determine process parameters such as oxygen concentration at their corresponding position inside a bioreactor. Accompanying Lattice-Boltzmann Large Eddy Simulations (LB LES) provide additional information about the fluid flow and the difference in the trajectories between inertial and non-inertial particles. The data acquired from LB LES is validated with the experimental data by means of a Lagrangian and a Eulerian approach. In their tail, the probability distributions show higher Lagrangian velocities and accelerations for 4D-PTV data compared to LB LES data. Time-averaged Eulerian data is utilized to determine particle Reynolds numbers lower than 200. The Stokes number distributions show 10-fold higher values for the alginate beads than for PE particles, however, both particle types do not sufficiently meet the criterion of a flow-following Stokes number of St≤0.01. Generally, time-averaged results from LB LES are in good accordance to the 4D-PTV data. From the LB LES, a theoretical, maximum particle diameter of approx. 20 μm is determined, which meets the criterion of St≤0.01 throughout the reactor. This result implies that with current sensor particle technology it is not possible to meet the flow-following behavior and depict the lifelines of cells during a cultivation process. Therefore, further research is necessary to understand particle trajectories and to translate them into lifelines of cells.