Prof. Dr. Alexandra von Kameke


Department of Mechanical Engineering and Production

Hamburg University of Applied Sciences

Berliner Tor 21

20099 Hamburg

Phone +49 40 428 75 - 8624

Mail Prof. Dr. Alexandra von Kameke


 

Research Interest

  •  2D-Turbulence

  • Reaction-Diffusion-Advection Systems

  • Faraday Flow 

  • Vorticity generation

  • Global and local mixing dynamics and statistics

  • Turbulent inter-scale kinetic energy transfer

  • Pipe turbulence

  • Reaction front spreading

"Generation of energy and vorticity production by surface waves through two-dimensional turbulence effects"

We study energy condensation in quasi two-dimensional turbulence that is driven by surface waves. This physical mechanism is investigated with regard to its potential for energy production.
In two-dimensional turbulence the net energy is transferred from small scales to large scales. Energy condensation develops when large scale friction is low and energy piles up at large scales. In this way, energy condensation produces large ordered flow structures from disordered small scale forcing that drives the two-dimensional turbulence. It was shown only recently that two-dimensional turbulence can also be driven by surface waves [von Kameke et al. 2011].

However, it is unclear if two-dimensional turbulence and energy condensation can also be driven by more naturally occurring unordered forcing as for instance provided by oceanic surface waves. Further, it is not yet fully understood how non-breaking surface waves generate horizontal vorticity, and if the waves have to possess certain properties, i.e., if they need to be standing, non-linear or monochromatic [Francois et al. 2014, Filatov et al. 2016]. Additionally, the necessary boundary conditions for energy condensation are vague and need clarification. And, it needs to be addressed if the process of energy condensation is stable to the introduction of further sources of drag, i.e., when a turbine is plugged into the fluid flow in order to retrieve energy.

Here, these open points are to be investigated using a Faraday experiment [von Kameke et al. 2010, von Kameke et al. 2011, von Kameke et al. 2013]. The generation of vorticity by the surface waves and the influence of the boundary- and forcing- conditions on energy condensation will be studied as well as the velocity statistics. To this end the full unsteady three-dimensional velocity field at the water surface and below the water surface needs to be recorded which has not been investigated so far. The latest optical methods will be used, such as time-resolved high speed planar particle image velocimetry and time-resolved three-dimensional particle image velocimetry and particle tracking. The complete velocity data allows to doubtlessly verify, if the flow obtained in each case is two-dimensional and, if energy condensation takes place. Two-dimensionality is analyzed on the basis of energy and enstrophy spectra and spectral fluxes, calculated with the aid of a novel filtering method [Eyink, 1995, von Kameke et al. 2011, von Kameke et al. 2013]. Moreover, existing three- dimensional flow structures will be identified and characterized. The forcing, exerted by the surface waves on the fluid-particles, and the resulting vorticity generation will be quantified by measuring the fluid surface elevation simultaneously to the PIV measurements and the subsequent usage of Lagrangian methods [von Kameke et al. 2011, von Kameke et al. 2013, LaCasce 2008] that allow to correlate both movements. The objective of this study is to uncover a new effective mechanism to retrieve renewable energy and will broaden insight into surface wave physics and two-dimensional turbulence. 

 

Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 395843083

Publications

[158051]
Title: Experimental Investigation of Reactive Bubbly Flows—Influence of Boundary Layer Dynamics on Mass Transfer and Chemical Reactions. <em>Reacticve Bubbly Flows</em>
Written by: Kexel, F.; Kastens, S.; Timmermann, J.; Kameke, A. v.; Schlüter, M.
in: (2021).
Volume: Number:
on pages: 267–307
Chapter:
Editor: In Schlüter, M.; Bothe, D.; Herres-Pawlis, S.; Nieken, U. (Eds.)
Publisher: Springer:
Series:
Address:
Edition:
ISBN: 978-3-030-72361-3
how published:
Organization:
School:
Institution:
Type:
DOI: https://doi.org/10.1007/978-3-030-72361-3_12
URL:
ARXIVID:
PMID:

Note:

Abstract: Bubbly flows are extensively used processes in the chemical industry. Since the complex interaction of fluid dynamics, mass transfer and chemical reaction is not yet fully understood, a reliable prediction of yield and selectivity is not possible. Within this work different benchmark experiments are developed, allowing the investigation of the interplay of mixing and chemical reactions. For precise predictions of the chemical process, a detailed knowledge about the intrinsic kinetics is essential. Therefore, the guiding measure “SuperFocus Mixer” (SFM) has been developed and successfully tested by determining the kinetics of a model system and of the oxidation of a temperature sensitive copper complex. In a second step, the identified reaction is transferred into the Taylor bubble setup, marking the second benchmark system. Here the effect of mixing on the production of the products in consecutive and competitive-consecutive reaction is investigated. The conducted experiments show significant influence of the mixing intensity on the production of the first reaction product MNIC and the side product DNIC, favoring the first product at intensified mixing. Finally, the local mass transfer at freely ascending bubbles superimposed by a chemical reaction is determined by applying planar-LIF, and the influence of bubble–bubble bouncing is quantified. In addition, a novel method, the Time Resolved Scanning-LaserInduced Fluorescence (TRS-LIF) for the visualization of 3D concentration fields, is introduced and tested at single rising oxygen bubbles.