Abstract: In times of increasing resource scarcity, the conversion of substances with high yield and selectivity is becoming increasingly important. For many bulk chemicals, gaseous substances must be mixed with a continuous liquid phase and reacted (e.g., oxidation, hydrogenation, chlorination). The mixing of the gas phase with the liquid phase is often performed in bubbly flows, e.g., in bubble column reactors. The time scales of the mixing are mainly determined by bubble-induced buoyancy flows, the flow around the bubbles and transport resistances of phase boundaries and boundary layers. In this research work, we systematically investigate to what extent the formation of a side product in a fast competing subsequent reaction can be influenced by the time scales of mixing. For this purpose, a Taylor bubble experiment is used, in which the time scales of mixing can be varied systematically and reproducibly. It is shown, that the mixing in the wake of a bubble is of great importance for the formation of by-products.
The article was created within the framework of the <link>SPP 1740.