Simon Stock

M.Sc.
Research Assistant

Contact

Simon Stock, M. Sc.
E-6 Elektrische Energietechnik
  • Elektrische Energietechnik
Office Hours
Jederzeit
Harburger Schloßstraße 22a,
21079 Hamburg
Building HS22a, Room 2.002
Phone: +49 40 42878 2378
Logo

Research Projects

Applications of AI in distribution system operation

Applications of AI in distribution system operation

Hamburg University of Technology (TUHH); Duration: 2020 to 2024

VeN²uS
Networked grid protection systems - Adaptive and interconnected

VeN²uS

Networked grid protection systems - Adaptive and interconnected

Federal Ministry for Economic Affairs and Climate Action (BMWK); Duration: 2021 to 2024

Research Focus

Optimal operation and energy managment in electrical distribution grids (Smart Grids) using artifical intelligence

Publications

TUHH Open Research (TORE)

2023

2022

2021

Courses

Stud.IP
zur Veranstaltung in Stud.IP Studip_icon
Information Theory and Coding
Untertitel:
This course is part of the module: Information Theory and Coding
Semester:
SoSe 24
Veranstaltungstyp:
Vorlesung (Lehre)
Veranstaltungsnummer:
lv436_s24
DozentIn:
Gerhard Bauch, Philipp Mohr, PD Dr.-Ing. habil. Rainer Grünheid
Beschreibung:
  • Introductionto information theory and coding
  • Definitionsof information: Self information, entropy
  • Binaryentropy function
  • Sourcecoding theorem
  • Entropyof continuous random variables: Differential entropy, differential entropy ofuniformly and Gaussian distributed random variables
  • Sourcecoding
    • Principlesof lossless source coding
    • Optimalsource codes
    • Prefixcodes, prefix-free codes, instantaneous codes
    • Morsecode
    • Huffmancode
    • Shannoncode
    • Boundson the average codeword length
    • Relativeentropy, Kullback-Leibler distance, Kullback-Leibler divergence
    • Crossentropy
    • Lempel-Zivalgorithm
    • Lempel-Ziv-Welch(LZW) algorithm
    • Textcompression and image compression using variants of the Lempel-Ziv algorithm
  • Channelmodels
    • AWGNchannel
    • Binary-inputAWGN channel
    • Binarysymmetric channel (BSC)
    • Relationshipbetween AWGN channel and BSC
    • Binaryerror and erasure channel (BEEC)
    • Binaryerasure channel (BEC)
    • Discretememoryless channels (DMC)
  • Definitionsof information for multiple random variables
    • Mutualinformation and channel capacity
    • Entropy,conditional entropy
    • Chainrules for entropy and mutual information
  • Channelcoding theorem
  • Channelcapacity of fundamental channels: BSC, BEC, AWGN channel, binary-input AWGNchannel etc.
  • Power-limitedvs. bandlimited transmission
  • Capacityof parallel AWGN channels
    • Waterfilling
    • Examples:Multiple input multiple output (MIMO) channels, complex equivalent basebandchannels, orthogonal frequency division multiplex (OFDM)
  • Source-channelcoding theorem, separation theorem
  • Multiuserinformation theory
    • Multipleaccess channel (MAC)
    • Broadcastchannel
    • Principlesof multiple access, time division multiple access (TDMA), frequency divisionmultiple access (FDMA), non-orthogonal multiple access (NOMA), hybrid multipleaccess
    • Achievablerate regions of TDMA and FDMA with power constraint, energy constraint, powerspectral density constraint, respectively
    • Achievablerate region of the two-user and K-user multiple access channels
    • Achievablerate region of the two-user and K user broadcast channels
    • Multiuserdiversity
  • Channelcoding
    • Principlesand types of channel coding
    • Coderate, data rate, Hamming distance, minimum Hamming distance, Hamming weight,minimum Hamming weight
    • Errordetecting and error correcting codes
    • Simpleblock codes: Repetition codes, single parity check codes, Hamming code, etc.
    • Syndromedecoding
    • Representationsof binary data
    • Non-binarysymbol alphabets and non-binary codes
    • Codeand encoder, systematic and non-systematic encoders
    • Propertiesof Hamming distance and Hamming weight
    • Decodingspheres
    • Perfectcodes
    • Linearcodes
    • Decodingprinciples
      • Syndromedecoding
      • Maximuma posteriori probability (MAP) decoding and maximum likelihood (ML) decoding
      • Harddecision and soft decision decoding
      • Log-likelihoodratios (LLRs), boxplus operation
      • MAPand ML decoding using log-likelihood ratios
      • Soft-insoft-out decoders
    • Errorrate performance comparison of codes in terms of SNR per info bit vs. SNR percode bit
    • Linearblock codes
      • Generatormatrix and parity check matrix, properties of generator matrix and parity checkmatrix
      • Dualcodes
    • Lowdensity parity check (LDPC) codes
      • Sparseparity check matrix
      • Tannergraphs, cycles and girth
      • Degreedistributions
      • Coderate and degree distribution
      • Regularand irregular LDPC codes
      • Messagepassing decoding
        • Messagepassing decoding in binary erasure channels (BEC)
        • Systematicencoding using erasure message passing decoding
        • Messagepassing decoding in binary symmetric channels (BSC)
          • Extrinsicinformation
          • Bit-flippingdecoding
          • Effectsof short cycles in the Tanner graph
          • Alternativebit-flipping decoding
          • Softdecision message passing decoding: Sum product decoding
        • Biterror rate performance of LDPC codes
      • Repeataccumulate codes and variants of repeat accumulate codes
      • Messagepassing decoding and turbo decoding of repeat accumulate codes
    • Convolutionalcodes
      • Encodingusing shift registers
      • Trellisrepresentation
      • Harddecision and soft decision Viterbi decoding
      • Biterror rate performance of convolutional codes
      • Asymptoticcoding gain
      • Viterbidecoding complexity
      • Freedistance and optimum convolutional codes
      • Generatorpolynomial description and octal description
      • Catastrophicconvolutional codes
      • Non-systematicand recursive systematic convolutional (RSC) encoders
      • Ratecompatible punctured convolutional (RCPC) codes
      • Hybridautomatic repeat request (HARQ) with incremental redundancy
      • Unequalerror protection with punctured convolutional codes
      • Errorpatterns of convolutional codes
    • Concatenatedcodes
      • Serialconcatenated codes
      • Parallelconcatenated codes, Turbo codes
      • Iterativedecoding, turbo decoding
      • Biterror rate performance of turbo codes
      • Interleaverdesign for turbo codes
    • Codedmodulation
      • Principleof coded modulation
      • Achievablerates with PSK/QAM modulation
      • Trelliscoded modulation (TCM)
      • Setpartitioning
      • Ungerböckcodes
      • Multilevelcoding
      • Bit-interleavedcoded modulation


Leistungsnachweis:
605 - Information Theory and Coding<ul><li>605 - Information Theory and Coding: Klausur schriftlich</li></ul>
ECTS-Kreditpunkte:
4
Weitere Informationen aus Stud.IP zu dieser Veranstaltung
Heimatinstitut: Institut für Nachrichtentechnik (E-8)
In Stud.IP angemeldete Teilnehmer: 140
Anzahl der Postings im Stud.IP-Forum: 7
Anzahl der Dokumente im Stud.IP-Downloadbereich: 34

Supervised Theses

ongoing
completed

2021

  • Hund, P. (2021). Modellierung eines elektrischen Netzes zur Demonstration des Einflusses von virtueller Trägheit durch umrichterbasierte Energieanlagen.

  • Hund, P. (2021). Koordinierte Bereitstellung von virtueller Trägheit durch erneuerbare umrichterbasierte Energieanlagen in Verteilnetzen mithilfe von künstlicher Intelligenz.

  • Möller, P. (2021). Erfassung der Knotenspannung in Niederspannungsnetzen auf Basis von dezentralen Messeinrichtungen mithilfe von Machine learning.

  • Plant, R. (2021). Estimation of Power System Inertia in an Inverter-Dominated Distribution Grid Using Machine Learning.

2020

  • Dressel, M. (2020). Modellierung der Zustandsschätzung eines elektrischen Netzes mit Hilfe von Graph neuronalen Netzen.

  • Schmidt, M. (2020). Vorhersage von zuverlässig bereitstellbarer Regelleistung aus Erneuerbaren Energien mithilfe von neuronalen Netzen.