Johannes Heise

M.Sc.
Research Assistant

Contact

Johannes Heise, M.Sc.
E-6 Elektrische Energietechnik
  • Elektrische Energietechnik
Office Hours
Nach Vereinbarung
Harburger Schloßstraße 22a,
21079 Hamburg
Building Harburger Schloßstraße 22a, Room 2.003
Phone: +49 40 42878 4099
Logo

Research Project

iNeP
Integrated network planning for the electricity, gas and heat sectors

iNeP

Integrated network planning for the electricity, gas and heat sectors

Federal Ministry for Economic Affairs and Climate Action (BMWK); Duration: 2021 to 2026

Publications

TUHH Open Research (TORE)

2023

2022

2021

Courses

Stud.IP
link to course in Stud.IP Studip_icon
Software für Eingebettete Systeme
Subtitle:
Module: Software für Eingebettete Systeme
Semester:
SoSe 24
Course style:
Lecture + Lab
Course type:
Lecture
Course number:
lv1069_s24
Lecturer:
Prof. Dr. Bernd-Christian Renner, Peter Oppermann, Johannes Göpfert, Fabian Steinmetz
Description:
Embedded systems are present everywhere in our daily lives and are integral parts of modern engineering. They start with smart lightbulbs or electric door openers and continue with control units for automotive applications or industrial machines. Furthermore, safety-critical systems, such as airbags or ventilators, are controlled with an embedded system.

Course Objectives

In this course, the students learn to develop software for embedded systems. At first, the students learn the concepts of embedded systems, including hardware structures and software design. Afterwards, they are introduced to microcontrollers and their functionalities, such as input and output registers, timers, interrupts, and bus systems. At the end of this course, the students know how to develop, implement, and test software for embedded systems.

Prerequisites

Students taking this course must be familiar with the C programming language and its concepts, for example, pointers and procedural programming. Furthermore, basic knowledge of software design and electrical engineering is helpful for this course.

Lab

A lab accompanies the lecture, where the students learn to program a microcontroller and apply the lecture’s content. Using an ATmega32U4, the students develop a hardware-oriented and low-level software library to address digital input and output pins, read analog to digital (ADC) converters for analog sensors, use hardware timers and interrupts, and control an actuator. At the end of the lab, the students combine all functionalities and implement software for different applications.
Performance accreditation:
Written Exam
ECTS credit points:
6
Stud.IP informationen about this course:
Home institute: Institut für Autonome Cyber-Physische Systeme (E-24)
Registered participants in Stud.IP: 142
Postings: 4
Documents: 34

Supervised Theses

ongoing

2024

  • Westphal, M (2024). Optimierte Planung eines gekoppelten Verteilnetzes unter der Berücksichtigung flexibler Komponenten.

2023

  • Hülfenhaus, V (2023). Modellierung und Planung eines urbanen sektorgekoppelten Verteilnetzes.

completed

2023

  • Körber, C (2023). Quantifizierung und Modellierung von Flexibilitätsoptionen im Mittelspannungsverteilnetz für eine optimierte Netzplanung.

  • Oboreh, J (2023). Einsatz von Gas-gefeuerten Blockheizkraftwerken zur Stabilisierung des Stromnetzes bei hoher Durchdringung von Wärmepumpen.

  • Velikov, S (2023). Entwicklung und Parametrisierung eines Wärmepumpen- und Speichermodells für die Netzberechnung und -planung.

  • Westphal, M (2023). Aggregation von Flexibilitäten im Niederspannungsnetz zur Netzplanung unter Berücksichtigung der Auslastung von Betriebsmitteln.

2022

  • Albrecht, J. P. (2022). Entwicklung einer netzdienlichen Regelungsstrategie für einen Elektrolyseur im Verteilnetz.

  • Barthelme, J. (2022). Technisch-ökonomische Systemmodellierung und -anlayse eines urbanen Quatiers hinsichtlich des Einsatz von Wasserstoff als primärer Energieträger.