Robustness of Functional Networks

A conceptual and mathematical basis for experimental perturbations is necessary not only for the design of experiments for system identification but also for the foundation of a theory of network robustness. We use an approach to robustness of a functional network against knockouts that is based on conditional independence (CI) statements, building on the robustness theory proposed by Nihat Ay and David Krakauer.

Algebraic statistics provides methods from commutative algebra and algebraic geometry in order to study such collections of CI statements. In particular, primary decomposition of CI ideals can be used to determine the solution set of these statements. We aim at further studying such varieties in order to derive design principles for robust systems.

This project is part of the VW project Evolution of Networks: Modelling the complexity and robustness of evolving biochemical networks , and it is also supported by the Santa Fe Institute.

People:

Nihat Ay

Johannes Rauh

 

Collaborations:

Jessica Flack

David Krakauer

Areejit Samal

Katja Müller

 

Further Information:

Project page

Supported by the Volkswagen Stiftung

Opening Workshop