
VERIFIED ERROR BOUNDS FOR MATRIX DECOMPOSITIONS∗1

SIEGFRIED M. RUMP† AND TAKESHI OGITA‡2

Abstract. In this note we consider common matrix factorizations such as LU decomposition of3
a square and rectangular matrix, Cholesky and QR decomposition, singular value decomposition for4
square and rectangular matrices, eigen-, Schur and Takagi decomposition. We first note that well-5
conditioned factors tend to be sensitive to perturbations of the input matrix, while ill-conditioned6
factors tend to be insensitive. It seems that this behaviour has not been recognized in numerical7
analysis. We develop a formula for the relation between condition number of the factor and its8
sensitivity with respect to input perturbations, and give reasons for that.9

Our main focus is to describe verification methods for the factors of the mentioned decompo-10
sitions. That means to prove existence of the factorization together with rigorous entrywise error11
bounds for the factors. Our goal is to develop algorithms requiring O(Pp2) operations for an m× n12
matrix with P := max(m,n) and p := min(m,n). Moreover, bounds of high quality are aimed for,13
often not far from maximal accuracy. A main tool to achieve that is accurate dot products based on14
error-free transformations. Since preconditioning based on approximate inverses is used, our methods15
are restricted to full matrices.16

Key words. Sensitivity of matrix factors, verified inclusions, error-free transformations, LU17
decomposition, Cholesky decomposition, QR decomposition, singular value decomposition, eigende-18
composition, Schur decomposition, polar decomposition, Takagi decomposition, INTLAB19

MSC codes. 65G20, 65F9920

1. Introduction. Verification methods are mathematical theorems the assump-21

tions of which can be verified on a digital computer. The assumptions are verified22

with mathematical rigor including all procedural, rounding and other sources of error,23

thus the assertions are true with mathematical rigor. The error bounds are computed24

together with the proof of existence and often uniqueness of the solution. Problems25

cover systems of linear and nonlinear equations, eigenproblems or ordinary and partial26

differential equations. For the theoretical foundation and algorithms see [26, 32, 28].27

Verification methods aim to formulate the assumptions in such a way that they28

can be rigorously verified on a computer, and that it is likely that they are satisfied29

for not too ill-conditioned problems. The computing time should be of the same order30

as that of a standard numerical algorithm. The bounds should be narrow.31

There is a general limit to verification methods, namely, they are not applicable to32

ill-posed problems. That is the price we have to pay by using floating-point operations33

combined with error estimates rather than computing exactly like in computer algebra.34

For example, it is possible to verify that a matrix is nonsingular, even for very large35

condition numbers. However, it is not possible to verify that a matrix is singular36

because that problem is ill-posed in the sense of Tikhonov [40, 41]: An arbitrarily37

small change of the input data may change the answer. Similarly, even for a symmetric38

matrix it is not possible to compute narrow error bounds for an individual eigenvector39

to a double eigenvalue, see (6.1). However, verified bounds are possible for a basis of40

the invariant subspace.41

In this note we are interested in fast verification methods for the factors of stan-42

∗Submitted to the editors DATE.
Funding: This work was partially supported by JSPS KAKENHI Grant Number JP23H03410.
†Institute for Reliable Computing, Hamburg University of Technology, Am Schwarzenberg-

Campus 3, Hamburg 21073, Germany, and Faculty of Science and Engineering, Waseda University,
3–4–1 Okubo, Shinjuku-ku, Tokyo 169–8555, Japan (rump@tuhh.de).
‡Faculty of Science and Engineering, Waseda University, 3–4–1 Okubo, Shinjuku-ku, Tokyo 169–

8555, Japan (t.ogita@waseda.jp).

1

This manuscript is for review purposes only.

mailto:rump@tuhh.de
mailto:t.ogita@waseda.jp

2 S. M. RUMP, AND T. OGITA

dard matrix decompositions with emphasis on the complete matrix decomposition.43

For example, methods are known [18, 4] to compute error bounds for a single eigen-44

pair. For an n×n matrix those methods might be applied to each individual eigenpair,45

however, resulting in totally O(n4) operations. In contrast, [25, 24] give methods to46

compute error bounds for the complete eigendecomposition in O(n3) operations in-47

cluding the treatment of clustered and/or multiple eigenvalues.48

In [34] fast methods are described to compute error bounds for the complete49

singular value decomposition of an m× n matrix with special emphasis on clustered50

and/or multiple singular values. Here “fast” means O(Pp2) operations with P :=51

max(m,n) and p := min(m,n).52

However, no verification methods are known for other standard matrix decompo-53

sitions. We close this gap by giving fast algorithms for the LU, Cholesky, QR, and54

Schur decomposition. In addition to “fast” in terms of O(Pp2) operations we aim on55

inclusions being accurate for all solution components, i.e., the entrywise relative error56

between lower and upper bound should be close to the relative rounding error unit u57

of the floating-point arithmetic in use.58

Let K ∈ {R,C}. We use the notation Mm,n for the set of matrices in Km×n, and59

shortly Mn if m = n. For A ∈ Mm,n we denote by Ak ∈ Mk the upper left k × k60

principal submatrix of A. We adopt the convention that inverses are assumed to exist61

if used. The n×n identity matrix is denoted by In, where the index is omitted if clear62

from the context. Moreover, Im.n ∈Mm,n is the matrix with Ip for p := min(m,n) in63

the upper left corner and zero elsewhere.64

Any method to compute rigorous error bounds for scalar, vector and matrix op-65

erations is suitable for the algorithms to be presented. We use interval arithmetic66

[26] because it is simple and intuitive to use, in particular in INTLAB [31], the MAT-67

LAB/Octave toolbox for reliable computing. We use the interval notation [15], where68

in particular boldface letters indicate interval quantities.69

Not much knowledge about verification methods and/or interval arithmetic is70

necessary to follow this note, basically familiarity with MATLAB notation. The rep-71

resentation of intervals like infimum-supremum or midpoint-radius is not important:72

throughout this note we only use the inclusion property, namely, that interval opera-73

tions ◦ ∈ {+,−, ·, /} are defined such that for compatible interval quantities A,B74

(1.1) ∀A ∈ A ∀B ∈ B : A ◦B ∈ A ◦B75

is satisfied. For details see [26, 32, 28]. For M ∈ Mn(K) and non-negative R ∈76

Mn(R) the command midrad(M,R) is a superset of {A ∈ Mn(K) : |A − M | 6 R}77

with entrywise comparison and absolute value. Moreover, X = f(A) for an interval78

quantity A and the induced function f implies that f(A) ∈ X for all A ∈ A.79

For an interval X, the magnitude is defined by mag(X) := max{|x| : x ∈ X} > 0.80

The definition applies entrywise to vectors and matrices, so that B = mag(A) satisfies81

|Aij | 6 Bij for all i, j, cf. [26]. The result B is a non-negative vector/matrix.82

Throughout this note we use the new definition [35] of the relative error of an83

interval quantity X, which is basically diam(X)/mag(X) for diam(X) denoting the84

diameter of X. The definition applies to vectors and matrices entrywise.85

We use some notations in MATLAB-style, in particular86

A[`] the strictly lower triangular part ofA

A[u] the upper triangular part ofA

max(A) the row vector of columnwise maxima ofA

sum(A,2) the column vector of rowwise sums ofA

87

This manuscript is for review purposes only.

VERIFIED ERROR BOUNDS FOR MATRIX DECOMPOSITIONS 3

for square A. For the maximum and sum we use the typewriter font to avoid confusion88

with the mathematical terms. The MATLAB notation for A[`] and A[u] is tril(A,-1)89

and triu(A), respectively. We introduce this short notation because we use them90

frequently when developing the algorithms for the LU decomposition. The maximum91

and sum apply to A ∈Mm,n as well, and also the triangular parts apply to A ∈Mm,n92

in the sense that, for example, B = tril(A) is the lower triangular part of A. That93

means for matrices of any dimension A = A[`] +A[u].94

For A,B,C ∈ Mn we note entrywise upper bounds for |ABC|. Denote by µ :=95

max(|C|) the row vector of columnwise maxima of |C|, and by σ := sum(|A|,2) the96

column vector of rowwise sums of |A|, i.e., µ` = max16k6n |Ck`| and σi =
∑n
j=1 |Aij |.97

Then98

(1.2)
|ABC|i` =

∑n
j=1

∑n
k=1 |AijBjkCk`| 6

∑n
j=1

∑n
k=1 |AijBjkµ`|

6 ‖B‖∞µ`
∑n
j=1 |Aij | 6 σiµ`‖B‖∞ ,

99

so that entrywise upper bounds100

(1.3) |ABC| 6 sum(|A|,2) max(|C|)‖B‖∞ and |AB| 6 sum(|A|,2) max(|B|)101

by outer products follow. Note that the computational cost is O(n2). With the same102

complexity the bounds103

|ABC| 6 sum(|A|,2) max(|B|) · |C| and |ABC| 6 |A| · sum(|B|,2) max(|C|)104

follow; however, in our applications B = (I + F)−1 is a perturbation of the identity105

matrix, so that the entries of B are not available but an upper bound for ‖B‖∞ is.106

These estimates are true for real and complex matrices, as well as for any compatible107

matrix dimensions of A,B, and C.108

All computational results use MATLAB [22] and double precision (binary64), i.e.,109

some 53 bits in the mantissa with the relative rounding error unit u = 2−53 ≈ 10−16.110

We use directed rounding which is part of the IEEE 754 arithmetic standard [1].111

The statement setround(-1) implies that from now until the next call of setround112

the rounding mode is downwards, i.e., towards −∞. As a consequence the result of113

floating-point operations is the largest floating-poing number being less than or equal114

to the true real result. Similarly, setround(1) switches the rounding upwards so that115

the smallest floating-poing number being greater than or equal to the true real result116

is computed. These statements are true for vector and matrix operations as well. As117

a consequence, the code sequence118

setround(-1), Cinf = A*B;119

setround(+1), Csup = A*B;120

flpt = isequal(Cinf,Csup)121

produces the result flpt = true if, and only if, all entries of the product AB are122

exactly representable in floating-point.123

We aim on producing accurate bounds, i.e., the lower and upper bound often differ124

by few bits. Our main tool to achieve this are accurate dot products, either purely125

approximate or with error bound. To that end there are many techniques. Some126

of the early references are [42, 23, 21]. Later so-called “error-free transformations”127

[16, 7] were used to transform a pair (a, b) of floating-point numbers into a new pair128

(x, y) such that, e.g., x is the floating-point product ab and y is the error in the sense129

ab = x+y and similarly for sum, quotient, and square root. That technique was used130

in [27] to introduce “error-free vector transformations” where a vector v of n floating-131

point numbers is transformed into a vector w of the same length such that wn is the132

This manuscript is for review purposes only.

4 S. M. RUMP, AND T. OGITA

floating-point sum of the vi and
∑
vi =

∑
wi. In that paper the term “error-free133

transformations” was coined which was the start of a revival of such methods. Using134

error-free vector transformations, sums and dot products of arbitrarily large condition135

number can be computed with maximal precision [27].136

The mentioned error-free transformations are based on a relative splitting of the137

input data. Yet a completely different method was introduced in [43] where an ab-138

solute splitting of vectors was introduced. That method was analyzed in [36] and139

is also used for reproducible results [3]. Moreover, this method was used to develop140

very efficient algorithm for accurate matrix multiplication [29], with or without error141

bounds. In our note we use such algorithms. They work in ordinary double preci-142

sion floating-point arithmetic but produce a result “as if” computed with doubled143

precision, i.e., some 32 decimal digits, or more. That allows to store the result of a144

matrix product in two terms, a higher and a lower order part. We use that technique145

occasionally. To that end some double-double arithmetic as in [5] or [19] could be146

used as well.147

To be more precise the function prodK computes matrix products in (1 + k
2)-fold148

precision and rounds the result into working precision. In fact prodK is a very versatile149

function, but we need only few functionalities. For example, for a given square matrix150

A the code151

k = 2;152

[L,U,p] = lu(A,’vector’);153

R = prodK(L,U,-1,A(p,:),k);154

computes the residual LU −A(p, :) in two-fold precision and rounds the result into R155

in working precision. The call156

[R,E] = prodK(L,U,-1,A(p,:),k);157

produces the same R but in addition an error matrix E such that158

|LU −A(p, :)−R|ij 6 Eij .159

for all indices i, j. Larger values of k are possible, but not used in this note. When160

calculating triple products ABC it may be useful to compute the first product in161

two-fold precision but also store it as an unevaluated sum P1 + P2. For example,162

P = prodK(A,B,k,’OutputTerms’,2);163

X = prodK(P,C,k);164

stores P as a cell array, and the second call of prodK computes P1 ∗ C + P2 ∗ C in two-165

fold precision and stores the result in X in working precision.166

The key to our verification methods will be to transform the problem into the167

problem for a perturbed identity matrix. In particular in combination with extra-168

precise dot products that technique turns out to be effective. The transformation169

uses approximate inverses of approximate factors. These are usually full, also for170

sparse input matrix. Therefore applying our methods to sparse matrices is prohibitive171

because of expected fill-in. For some factorizations such as LU and at least the R-172

factor of QR are usually sparse for sparse input. Verified inclusions for these cases173

are open problems.174

We begin with an investigation of the sensitivity of matrix factors. In particular175

the fact that, in case of an ill-conditioned input matrix A, well-conditioned factors176

tend to be sensitive to perturbations of A seems unknown in numerical analysis. In177

the following sections verification methods for the factors of the LU decomposition178

of a square and rectangular matrix, Cholesky- and QR decomposition, singular value179

decomposition for square and rectangular matrices, eigen- and Schur decomposition180

This manuscript is for review purposes only.

VERIFIED ERROR BOUNDS FOR MATRIX DECOMPOSITIONS 5

are presented, accompanied by numerical results. As an application of the symmetric181

eigendecomposition we show how to compute inclusions for the Takagi factors.182

Throughout the note random matrices A ∈ Fm×n with specified condition number183

cond(A) ≈ 10k are generated by184

mn = min(m,n); s = logspace(0,k,mn); S = diag(s(randperm(mn)));185

if m~=n, S(m,n)=0; end; A = orth(randn(m)) * S * orth(randn(n));186

which is for square matrices equivalent to MATLAB’s gallery/randsvd.187

We present numerical evidence that mostly our method compute error bounds188

with an accuracy close to the relative rounding error unit u of the floating-point189

arithmetic in use. All our algorithms are given and implemented in pure MATLAB190

code, therefore suffering from interpretation overhead. Therefore we restrict timing191

information to the QR decomposition in Section 5 together with accuracy information192

of the built-in (approximate) MATLAB routines; the time ratio of other verification193

methods is similar.194

2. Sensitivity of factors in a decomposition. For any of the matrix decom-195

positions under investigation we made a general observation which seems to be known196

in the literature [13, 12, 8] but not so much in numerical analysis. Some perturbation197

bounds for LU, Cholesky, and QR decompositions can be found in [37], see also [11],198

however they overestimate the sensitivity of ill-conditioned factors.199

Let X be a factor of some decomposition of a matrix A. Denote by A + ∆A a200

small perturbation of A such that ‖∆A‖‖A‖ ∼ u for some matrix norm, and let X̃ be the201

corresponding factor of A+ ∆A. Then numerical evidence (cf. Tables 1–10) suggests202

that often the sensitivity of X satisfies203

(2.1) sensitivity(X) :=
‖X̃ −X‖
‖X‖

∼ u
cond(A)

cond(X)
,204

where cond(B) := ‖B‖ · ‖B−1‖ for a nonsingular square matrix B.205

For example, suppose A = LU with L being unit lower triangular. Then the206

U -factor of the LU decomposition has usually the same condition number as A. Al-207

though the L-factor is usually well conditioned by the widely accepted rule of thumb,208

numerical evidence (cf. Tables 1–4) suggests that its sensitivity grows with the con-209

dition number of A. That can be seen as follows. Let A+ ∆A = (L+ ∆L)(U + ∆U),210

then to first order211

(2.2) L−1 ·∆A · U−1 = L−1 ·∆L+ ∆U · U−1 .212

The matrices ∆L and L−1 · ∆L are strictly lower triangular, whereas ∆U · U−1 is213

upper triangular. Thus, taking the strictly lower triangular and upper triangular part214

from matrices of both sides of (2.2) implies215

∆L = L
[
L−1 ·∆A · U−1

][`]
and ∆U =

[
L−1 ·∆A · U−1

][u]
U .216

Numerical evidence suggests that the elements of each row of (the upper triangular217

part of) U are often of similar magnitude1, so that U ≈ DX for diagonal D with218

elements decreasing in magnitude with ‖D−1‖ ∼ ‖A−1‖ and well-conditioned X with219

the upper triangular part of entries close to 1 in magnitude. Hence220

L−1 ·∆A · U−1 ≈ L−1 ·∆A ·X−1D−1 =: Y D−1
221

1That is true due to our practical experience, and it is also satisfied for matrices generated by
randsvd from MATLAB’s matrix gallery in any of the 5 modes. However, for ill-conditioned matrices
generated by sprand with densitity 1, i.e., full matrices, it is sometimes not true.

This manuscript is for review purposes only.

6 S. M. RUMP, AND T. OGITA

for some Y with entries of the size of those of ∆A, i.e., ‖Y ‖ ∼ ‖∆A‖. Then222

∆L = L
[
L−1 ·∆A · U−1

][`] ≈ L [Y D−1
][`]

= LY [`]D−1
223

and224

∆U =
[
L−1 ·∆A · U−1

][u]
U ≈

[
Y D−1

][u]
DX = Y [u]X .225

Now ‖L‖ and ‖X‖ are small because both are usually well conditioned, so that226

‖D−1‖ ∼ ‖A−1‖ and ‖Y ‖ ∼ ‖∆A‖ ∼ u‖A‖ imply227

‖∆L‖ ∼ ‖∆A‖ · ‖A−1‖ ∼ u · cond(A) and ‖∆U‖ ∼ ‖∆A‖ ∼ u‖A‖228

and explain (2.1) for the LU decomposition.229

For the QR decomposition (2.1) is mentioned in [20]. Let A = QR and A+∆A =230

(Q+ ∆Q)(R+ ∆R), so that to first order231

M := Q∗ ·∆A ·R−1 = Q∗ ·∆Q+ ∆R ·R−1 and [Q∗ ·∆A ·R−1][`] = [Q∗ ·∆Q][`] .232

Using (Q+ ∆Q)∗(Q+ ∆Q) = I implies that C := Q∗ ·∆Q is skew-Hermitian, so that233

M [`] = C [`] yields234

C = C [`] −
(
C [`]

)∗
= M [`] −

(
M [`]

)∗
and ∆Q = Q

[
M [`] −

(
M [`]

)∗]
235

and explains (2.1) for the Q-factor. The perturbation of the R-factor satisfies236

(2.3) ∆R = [Q∗ ·∆A][u] −
[
M [`]R

][u]

+
[(
M [`]

)∗
R
][u]

.237

The first summand support (2.1), i.e., that R is not very sensitive to perturbations of238

A, the second and third one need some extra consideration. In a similar way to the239

LU decomposition, numerical evidence suggests that R ≈ DX for diagonal D with240

elements decreasing in magnitude and well-conditioned X with entries close to 1 in241

magnitude. Hence242 [
M [`]R

][u]

≈
[[
Q∗ ·∆A ·X−1D−1

][`]
DX

][u]

=
[[
Q∗ ·∆A ·X−1

][`]
X
][u]

243

which is of the order ‖∆A‖. For the third summand of (2.3) we have244 [(
M [`]

)∗
R
][u]

≈
[([

Q∗ ·∆A ·X−1D−1
][`])∗

DX
][u]

≈
[
(D−1)∗Y DX

][u]
245

for some Y with entries of the size of ‖∆A‖. Since the Dii decrease in magnitude,246

that supports (2.1) for R as well. For the Cholesky decomposition A = RTR the247

ansatz248

R−T∆A ·R−1 = R−T∆RT + ∆R ·R−1 implies ∆R = [R−T∆A ·R−1][u]R249

and explains (2.1) along the same lines as well. The condition number of the Cholesky250

factor is cond(A)1/2, and numerical evidence suggests indeed that the sensitivity is251

always of the order u cond(A)1/2 in accordance with (2.1). Similarly, for the QR252

decomposition cond(Q) = 1 and cond(R) = cond(A), so that (2.1) suggests that Q is253

sensitive to perturbations of A while R is not. Numerical evidence supporting these254

statements will be presented in the following sections.255

As a consequence and from a numerical standpoint of view to our surprise, we256

may expect that accurate inclusions are more demanding for well conditioned factors.257

This manuscript is for review purposes only.

VERIFIED ERROR BOUNDS FOR MATRIX DECOMPOSITIONS 7

3. LU decomposition. If all upper left principal minors det(Ak) of A ∈Mm,n258

are nonzero, then there is a unique LU decomposition of A. That is true for square as259

well as for rectangular matrices. If the first m−1 minors are nonzero but det(Am) = 0,260

then the decomposition exists but is not unique [11, Theorem 9.1].261

A verification method for computing inclusions of the L- and U -factor of a matrix262

A asserts, with mathematical certainty, that the decomposition exists and is unique.263

Thus, a necessary condition is that A has full rank.264

Given a matrix A ∈Mm,n, the following MATLAB code in Algorithm 3.1 (getL)265

computes the L-factor of A, cf. [10, p. 35], [11, (9.2a)].

Algorithm 3.1 Computation of the L-factor

function L = getL(A)

[m,n] = size(A);

mn = min(m,n);

L = eye(m,mn);

for k=1:mn-1

v = 1:k;

w = k+1:m;

Bv = inv(A(v,v)); % last column of inv(A(v,v)) needed

L(w,k) = A(w,v)*Bv(:,end);

end

266
For square A ∈ Mn, this requires to compute the last column of the inverse of Ak267

for 1 6 k 6 n − 1. To that end we see no other way than to compute the inverses268

individually at the cost of O(k3) operations each, so that totally prohibitive O(n4)269

operations are necessary.270

Let A ∈ Km×n be given and denote P := max(m,n) and p := min(m,n). Our271

goal is to compute verified and sharp error bounds for the factors L and U of A with a272

total computing time of O(Pp2) operations. This will be achieved by preconditioners273

XL, XU such that XLAXU is a perturbed identity matrix IE .274

We first show how to compute the LU decomposition of a perturbed identity275

matrix, followed by the cases m = n, m > n, and m < n for the LU decomposition of276

a general matrix.277

3.1. LU decomposition of a perturbed identity matrix. Let A ∈ Mm,n278

with m > n be given, denote E := A − Im,n and assume that En is convergent. Fix279

k with 1 6 k 6 n, let i satisfy k + 1 6 i 6 m, and denote B := A−1
k = (Ik + Ek)−1.280

Then, according to Algorithm 3.1 (getL), using (I + Ek)−1 = I − (I + Ek)−1Ek and281

Aiν = Eiν for i > k and ν 6 k yields282

Lik =

k∑
ν=1

AiνBνk =

k∑
ν=1

Eiν [Ik − (Ik + Ek)−1Ek]νk .283

Hence, denoting the k-th column of Ik by e(k) and using i > ν gives284

Lik − Eik = −
k∑
ν=1

(E[`])iν [(Ik + Ek)−1Eke
(k)]ν .285

Using (1.2) it follows286

|Lik − Eik| 6
k∑
ν=1

∣∣∣E[`]
∣∣∣
iν
‖(Ik + Ek)−1Eke

(k)‖∞ 6
k∑
ν=1

∣∣∣E[`]
∣∣∣
iν

‖Eke(k)‖∞
1− ‖Ek‖∞

.287

This manuscript is for review purposes only.

8 S. M. RUMP, AND T. OGITA

The k-th component of the row vector max(|E[u]
n |) is equal to ‖Eke(k)‖∞, so that the288

strictly lower triangular part of the difference between L and E is bounded above by289

the outer product290

(3.1)
∣∣∣L[`] − E[`]

∣∣∣ 6
(
sum(|E[`]|,2) · max(|E[u]

n |)
)[`]

1− ‖En‖∞
=: ∆ = ∆[`] ,291

and there exists a strictly lower triangular matrix C = C [`] with292

(3.2) L = I + E[`] + C [`] and |C [`]| 6 ∆[`] .293

In other words, the strictly lower triangular part of L is essentially equal to the strictly294

lower triangular part of E. The computational cost is O(mn) operations. For m < n295

the factor L is square, and along the same lines we deduce296

(3.3)
∣∣∣L[`] − E[`]

m

∣∣∣ 6
(
sum(|E[`]

m |,2) · max(|E[u]
m |)

)[`]

1− ‖Em‖∞
.297

If L is square, i.e., m 6 n, an inclusion of L−1 can be obtained using verification298

methods [32], however, we may proceed directly by using the Neumann expansion299

(I + F)−1 = I − F (I + F)−1 = I − (I + F)−1F = I − F + F (I + F)−1F .300

Then (1.3) implies301

|(I + F)−1 − I + F | 6 sum(|F |,2) max(|F |)
1− ‖F‖∞

302

provided that ‖F‖∞ < 1. Using (3.2), F := E[`] + C [`] and G := |E[`]|+ ∆[`] yields303

(3.4) L−1 = I − E[`] + δ with |δ| 6 ∆[`] +

[
sum(G,2) max(G)

1− ‖G‖∞

][`]

.304

Note that G = |L− I| and δ = δ[`], and error bounds are only needed for the strictly305

lower triangular part. The estimate may be improved by using more terms of the306

Neumann expansion, however, it seems hardly worth the effort.307

In order to compute an inclusion of U we may use, regardless whether m > n or308

m < n, the L-factor of the upper left square matrix of I + E, an inclusion of which309

can be computed as described before. For the case m > n we have (I + E)n = LnU ,310

and the uniqueness of the LU decomposition, (3.2) and (I+F)−1x = x−(I+F)−1Fx311

imply that312

U = (In + E
[`]
n + C

[`]
n)−1(In + En)

= (In + E
[`]
n + C

[`]
n)−1(In + E

[`]
n + C

[`]
n + E

[u]
n − C [`]

n)

= In + (In + E
[`]
n + C

[`]
n)−1(E

[u]
n − C [`]

n)

= In + E
[u]
n − C [`]

n − (In + E
[`]
n + C

[`]
n)−1(E

[`]
n + C

[`]
n)(E

[u]
n − C [`]

n) .

313

Note that the rightmost factor E
[u]
n − C [`]

n is a composition into upper and strictly314

lower part. Now (C [`])[u] = O because U = U [u] is upper triangular, and similar to315

This manuscript is for review purposes only.

VERIFIED ERROR BOUNDS FOR MATRIX DECOMPOSITIONS 9

the estimate for the L-factor it follows316

(3.5)
∣∣∣U − (In + E[u]

n)
∣∣∣ 6

(
sum(|E[`]

n + C
[`]
n |,2) · max(|E[u]

n − C [`]
n |)

)[u]

1− ‖E[`]
n + C

[`]
n ‖∞

.317

For the case m < n we identify the matrix dimensions by adding subscripts. For318

example, Em denotes the left upper m ×m principal submatrix of E and indicates319

the dimension as well. For A ∈ Mm,n we have A = Im,n + Em,n = LmUm,n, so that320

C
[`]
m = Cm with (3.2) for Lm, and for P ∈ Mm,n1

, Q ∈ Mm,n2
with matrix block321

notation [P,Q] ∈Mm,n1+n2
it follows322

Um,n = (Im + E[`]
m + C [`]

m)−1(Im,n + Em,n)323

= (Im + E[`]
m + C [`]

m)−1
(
Im,n + [E[`]

m + C [`]
m , Om,n−m] + [E[u]

m − C [`]
m , Em,n−m]

)
324

= Imn,n + (Im + E[`]
m + C [`]

m)−1[E[u]
m − C [`]

m , Em,n−m]325

= Imn,n + [E[u]
m − C [`]

m , Em,n−m]326

+ (Im + E[`]
m + C [`]

m)−1(E[`]
m + C [`]

m)[E[u]
m − C [`]

m , Em,n−m] .327

Since U ∈Mm,n is upper triangular we obtain, similar to the previous estimate,328

∣∣∣U − (Im,n + E[u]
m,n

) ∣∣∣ 6
(
sum(|E[`]

m + C
[`]
m |,2) · max(Bm,n)

)[u]

1− ‖E[`]
m + C

[`]
m ‖∞

=: ∆329

using Bm,n := [|E[u]
m | + |C [`]

m | , |Em,n−m|] which is |E| with E
[`]
m replaced by |C [`]

m |.330

The computational cost is again O(mn) operations.331

If m 6 n we may derive an inclusion of U−1 as well. We rewrite (3.5) into332

(3.6) U = I + E[u] + C [u] and |C [u]| 6 ∆[u] = ∆333

analogously to (3.2), and for G := |E[u]|+ ∆[u], similar to (3.4), it follows334

(3.7) U−1 = I − E[u] + δ with |δ| 6 ∆[u] +

[
sum(G,2) max(G)

1− ‖G‖∞

][u]

.335

In Figure 1 the norm of the right hand side of (3.1) and (3.5) together with
√
n‖E‖2336

is displayed for dimensions (m,n) = (100, 200) and (m,n) = (200, 100) for different337

norms of E. As can be seen the norm of the error of the bounds for L and U grow with338 √
n‖E‖2. Hence, for ‖E‖ . 10−8 the inclusions of the factors are maximally accurate,339

with errors of the size of the relative rounding error unit u ≈ 10−16. Actually Figure 1340

displays results for complex input matrix; the results for real input are similar.341

The graph of the norm of the error as in (3.4) and (3.7) of L−1 and U−1, re-342

spectively, looks exactly like Figure 1, so the error for the inclusions of L−1 and U−1343

grows with
√
n‖E‖2 as well.344

We close this subsection with giving executable MATLAB/INTLAB code in Al-345

gorithm 3.2 for the computation of inclusions of the L- and U -factor as well as of346

their inverses for a perturbed identity matrix I+E. Input is the perturbation E, and347

inclusions are stored as perturbations of the identity matrix as well, i.e., I +E = LU348

implies L ∈ I + LE, U ∈ I + UE, L−1 ∈ I + LinvE, and U−1 ∈ I + UinvE.349

This manuscript is for review purposes only.

10 S. M. RUMP, AND T. OGITA

Fig. 1. Norm of error bound for the L- and U-factor of I + E

Algorithm 3.2 Inclusion of L- and U -factor of I + E and their inverses

1 function [LE,UE,LinvE,UinvE] = LU_E(E)

2 setround(1)

3 magE = mag(E);

4 DeltaL = tril(sum(tril(magE,-1),2)*max(magE),-1);

5 DeltaL = - (DeltaL/(norm(magE,inf)-1));

6 LE = tril(E,-1) + midrad(0,DeltaL);

7 GL = mag(LE);

8 delta = tril(sum(tril(GL,-1),2)*max(GL),-1);

9 delta = DeltaL - delta/(norm(GL,inf)-1);

10 LinvE = -tril(E,-1) + midrad(0,delta);

11 B = triu(magE) + tril(DeltaL,-1);

12 DeltaU = triu(sum(GL,2)*max(B));

13 DeltaU = - (DeltaU/(norm(GL,inf)-1));

14 UE = triu(E) + midrad(0,DeltaU);

15 GU = mag(UE);

16 delta = triu(sum(triu(GU),2)*max(GU));

17 delta = DeltaU - delta/(norm(GU,inf)-1);

18 UinvE = -triu(E) + midrad(0,delta);

19 setround(0)

Throughout the code we use from line 2 rounding upwards, i.e., the computed350

floating-point result is always an upper bound of the true result (see Section 1). That351

holds true for vector and matrix operations as well. Thus, for example, the sum in352

the computation of DeltaL in line 4 is an upper bound of the row sums of absolute353

values of the strictly lower triangular part of E. The code is simplified in the sense354

that in lines 5, 9, 13, and 17 it is assumed that the upper bounds for the norms are355

This manuscript is for review purposes only.

VERIFIED ERROR BOUNDS FOR MATRIX DECOMPOSITIONS 11

strictly less than 1. Then the denominator in line 5 is negative and larger or equal356

to ‖E‖∞ − 1, so that the negative of the division produces a correct upper bound357

DeltaL. Similar arguments show the correctness of the code in lines 9, 13, and 17. For358

an interval matrix E, real or complex, the assertions hold true for every I+Ẽ ∈ I+E.359

For given A, the product U = L−1A can be enclosed by (I+LE)\A or A+LinvE·A,360

and similarly L = AU−1 can be enclosed2 by A/(I + LU) or A + A · LinvU. For not361

too large ‖E‖ the latter formulation is advantageous. To that end we compare the362

relative error of the former and the latter method. For different values of ε we choose363

perturbations I + E with ‖E‖ = ε and A ∈ M100 with fixed condition number 108.364

The results are shown in Figure 2 for L and U in the left and right graph, respectively.365

Fig. 2. Relative error of L\A vs. A + Linv ·A and A/U vs. A + A · Uinv

366

As can be seen both the results for L−1A and AU−1 improve for perturbations E of367

the identity matrix up to 10−9. For larger E there is not much difference.368

3.2. LU decomposition of general A ∈ Mm,n with m = n. Let A ∈ Mn be369

given. We first compute approximate factors L̃ and Ũ by an LU decomposition with370

partial pivoting and permute the rows of A accordingly.371

Let X̃L ≈ L̃−1 and X̃U ≈ Ũ−1 be approximate preconditioners, so that IE :=372

X̃LAX̃U is a perturbed identity matrix. In MATLAB we may compute X̃L by inv(Ls)373

as a left inverse, however, use eye(n)/Us to compute X̃U as a right inverse, cf. [11].374

Then the uniqueness of the LU decomposition and IE = LEUE imply375

L = X̃−1
L LE and U = UEX̃

−1
U .376

Note that in Algorithm 3.2 (LU E) the offsets LE and UE of LE and UE to the identity377

matrix are computed, respectively. The computational effort is O(n3) operations.378

2Recall that A/B is the MATLAB notation for AB−1.

This manuscript is for review purposes only.

12 S. M. RUMP, AND T. OGITA

Table 1
Condition number and sensitivity of the LU-factors for n = 100 and different condition numbers

cond(A) 102 105 108 1011 1014

cond(L) 1.4 · 102 1.4 · 102 1.4 · 102 1.4 · 102 1.4 · 102

cond(U) 2.7 · 102 4.8 · 104 2.4 · 107 1.7 · 1010 1.3 · 1013

sensitivity(L) 5.2 · 10−15 7.7 · 10−13 3.4 · 10−10 2.0 · 10−7 1.4 · 10−4

sensitivity(U) 3.3 · 10−15 5.2 · 10−15 6.9 · 10−15 8.1 · 10−15 9.4 · 10−15

It is well known that the condition number of A moves into the U -factor, i.e.,379

the factor L will be well conditioned whereas cond(U) ∼ cond(A). Thus we might380

expect the factor U to be sensitive to perturbations in A whereas L is not so sensitive.381

However, the opposite is true, see Table 1 for square matrices of dimension n = 100.382

As can be seen the condition number of L is small, that of U is of the order of cond(A).383

For the sensitivity displayed in the last two rows we perturb the matrix A into Ã by384

changing each entry of A randomly by 1 bit in the mantissa and display ‖L̃−L‖/‖L‖,385

and for U correspondingly. As can be seen, both L and U are insensitive for small386

condition number, however, for ill-conditioned A a perturbation of the last bit of A387

changes L relatively by about 10−4, whereas U changes only about in the last bit.388

This is in accordance with our rule of thumb (2.1). The numbers are the median of389

1000 samples.390

The reasoning for this rule of thumb (2.1) in Section 2 relied on the relation of391

the magnitude of the elements of U . It was also mentioned in a footnote that this392

relation is often not true for ill-conditioned matrices generated randomly by sprand393

with density 1, i.e., dense matrices. All entries of the factor U of such matrices394

are often not far from 1 in magnitude except one or two very small entries on the395

diagonal, often not Unn. We measured the sensitivity of L and U for square matrices396

of dimension n = 100 similar to Table 1 and display the results in Table 2.397

Table 2
Condition number and sensitivity of the LU-factors for n = 100 and matrices generated by sprand

cond(A) 102 105 108 1011 1014

cond(L) 7.0 · 101 7.2 · 101 7.3 · 101 7.4 · 101 7.6 · 101

cond(U) 5.4 · 102 4.1 · 105 3.9 · 108 3.8 · 1011 4.0 · 1014

sensitivity(L) median 2.0 · 10−15 1.7 · 10−13 2.4 · 10−10 3.4 · 10−8 2.3 · 10−4

sensitivity(L) mean 2.3 · 10−15 6.0 · 10−13 5.7 · 10−10 4.3 · 10−7 6.9 · 10−4

sensitivity(U) median 1.5 · 10−15 3.5 · 10−15 5.9 · 10−15 7.5 · 10−15 7.9 · 10−15

sensitivity(U) mean 1.7 · 10−15 1.5 · 10−13 5.6 · 10−11 1.2 · 10−7 1.4 · 10−4

As before the input matrices were perturbed entrywise and randomly by one bit, and398

the decompositions were performed using the multiple precision package [2] to avoid399

distortion of the sensitivity by rounding errors. For the median of the sensitivities of400

L and U there is not too much difference to Table 1. The mean and median of the401

sensitivity of L are similar3, so that seems to support (2.1). However, the mean of the402

sensitivities of U is larger than the median. Thus a few entries of U seem sensitive403

to perturbations, but the majority is not. So basically the rule of thumb (2.1) seems404

still applicable, but we don’t have an explanation for that behavior.405

The quality of the bounds depend on how close IE is to the identity matrix, i.e., for406

3All medians and means in Table 1 are all similar, so only the medians are displayed.

This manuscript is for review purposes only.

VERIFIED ERROR BOUNDS FOR MATRIX DECOMPOSITIONS 13

I+E := IE we want ‖E‖ to be as small as possible. The median of the relative errors407

of all inclusion components of L and of U is displayed in Figure 3 from left to right,408

respectively, for condition numbers from 1 to 1015. We first use interval arithmetic for409

the computation of IE := X̃LAX̃U and for L and U and display the relative errors in410

red. As expected, the error grows with the condition number. For condition numbers411

close to 1015 the inclusions are still accurate to about 8 to 10 decimal figures. The412

spikes for very large condition number indicate that the verification failed.413

Fig. 3. Norm of error bounds for the L- and U-factor for different condition numbers

To achieve more accurate bounds we compute IE as X̃L(AX̃U) and use for both414

products two-fold precision, equivalent to double-double precision. In the legend of415

Figure 3 this is indicated by k = 2. The result is displayed in Figure 3 in black, where416

in the right picture the black curve is identical to the blue curve to be defined. As can417

be seen the accuracy of U is now close to maximal precision equivalent to 16 decimal418

places for all condition numbers, and for L the accuracy is a little bit less. That419

corresponds to Table 1, i.e., we expect better inclusions for U rather than that of L.420

In order to improve the accuracy of the L-factor, we use L = LUX̃UU
−1
E implying421

(3.8) L = AX̃UU
−1
E and U = UEX̃

−1
U422

for the square case m = n. The product AX̃U is computed in doubled precision, the423

result is displayed as the blue curve in Figure 3. Now for all condition numbers and424

all entries of the factors L and U the bounds are of almost maximal accuracy, except425

for cond(A) = 1015 where the verification failed.426

3.3. LU decomposition of general A ∈Mm,n with m > n. Let A ∈Mm,n be427

given with m > n. We first compute an approximate LU decomposition with partial428

pivoting and permute the rows of A accordingly. Thus we may assume that the upper429

square block An has an LU decomposition. Following the approach discussed at the430

This manuscript is for review purposes only.

14 S. M. RUMP, AND T. OGITA

beginning of this section431

A = LU =

(
An

An

)
=

(
Ln

Ln

)
U432

so that433

XL :=

(
L−1
n On,m−n

−LnL−1
n Im−n

)
, XU := U−1

434

implies435

XLAXU =

(
In

Om−n,n

)
.436

We compute approximations X̃L ≈ XL and X̃U ≈ XU using an approximate LU437

decomposition A ≈ L̃Ũ , so that IE := X̃LAX̃U is a perturbed identity matrix. Then438

IE = LEUE implies439

X̃L :=

(
P On,m−n

Q Im−n

)
⇒ L =

(
P−1 On,m−n

−QP−1 Im−n

)
LE440

and U = UEX̃
−1
U . The computational effort is O(P 2p) operations for P = max(m,n)441

and p = min(m,n).442

Table 3
Condition number and sensitivity of the LU-factors for m = 200 and n = 100

cond(A) 102 105 108 1011 1014

cond(L) 8.6 · 101 8.5 · 101 8.6 · 101 8.6 · 101 8.5 · 101

cond(U) 3.4 · 102 9.1 · 104 5.5 · 107 4.1 · 1010 3.5 · 1013

sensitivity(L1) 6.4 · 10−15 1.3 · 10−12 6.6 · 10−10 4.3 · 10−7 3.1 · 10−4

sensitivity(L2) 1.3 · 10−14 3.6 · 10−12 2.3 · 10−9 1.8 · 10−6 1.5 · 10−3

sensitivity(U) 2.7 · 10−15 4.5 · 10−15 5.9 · 10−15 7.1 · 10−15 8.5 · 10−15

In Table 3 we show the sensitivity of the upper square block Ln, the remaining443

part Ln of L and of the U -factor, again the median over 1000 samples. Similar444

to the square case and as predicted by (2.1), with increasing condition number the445

components of the L-factor are getting sensitive to perturbations in A, while those of446

U are not. Hence, as for square A, we expect less accurate inclusions of L.447

The median of the relative errors of all inclusion components of the upper square448

part Ln of L, the remaining part Ln = L(n+ 1 : m, :) and of U is displayed in Figure449

4 from left to right, respectively, for condition numbers from 1 to 1015. As before we450

first use interval arithmetic for the computation of IE := X̃LAX̃U and to compute451

L and U and display the relative errors in red. As expected, the error grows with452

the condition number. For condition numbers close to 1015 the inclusions are still453

accurate to about 8 to 10 decimal figures.454

To achieve more accurate bounds we compute IE as X̃L(AX̃U) and use for both455

products two-fold precision, equivalent to double-double precision. The result is dis-456

played in Figure 4 in black. As can be seen the accuracy of U is now close to maximal457

precision equivalent to 16 decimal places for all condition numbers, for the upper part458

of L it improved significantly, and for the lower part of L the accuracy decreases from459

condition number 109.460

This manuscript is for review purposes only.

VERIFIED ERROR BOUNDS FOR MATRIX DECOMPOSITIONS 15

Fig. 4. First methods: Norm of error bounds for the L- and U-factor based on A

In order to obtain flat curves in all three pictures, i.e., close to maximal accuracy461

for all components of the L- and the U -factor, we compute the product AX̃U again in462

doubled precision but store it in two parts C1 +C2, and then compute X̃LC1 + X̃LC2463

in doubled precision but store it in one matrix IE . The result displayed in blue in464

Figure 4 is better than before, however, there is still a growth of the errors of the465

lower part of L from condition number 109.466

The following alternative approach is faster and better. To that end we use an467

approximate LU decomposition An ≈ L̃nŨ of the upper left square block of A. For468

approximations X̃Ln
≈ L̃−1

n and X̃U ≈ Ũ−1 let IE = X̃Ln
AnX̃U = LEUE . Then469

(3.9) U = UEX̃
−1
U and L = AX̃UU

−1
E470

using L = LUX̃UU
−1
E . Thus, for m > n we use the same formula as (3.8) for the471

square case. The computational effort is O(Pp2) operations.472

As before display the median of the relative errors of all components of the upper473

square part Ln of L, the lower part of L and of U in Figure 5. The red curves are474

the results when using interval arithmetic to compute IE := X̃LAX̃U , L and U and475

are similar to those before. Using extra precision to compute X̃L(AX̃U) is shown in476

black and is for both parts of L better than before. Finally, for the blue curve we used477

doubled precision to compute AX̃U and stored the result in two parts, which are then478

multiplied by X̃L. That last method yields for all condition numbers and all entries479

of the factors L and U bounds of almost maximal accuracy.480

3.4. LU decomposition of general A ∈ Mm,n with m < n. Let A ∈ Mm,n481

with m < n be given. Now the partial pivoting of an approximate LU decomposition482

may take only the left square block Am into account. Therefore, we first compute an483

approximate LU decomposition with partial pivoting of AT and permute the columns484

of A accordingly, followed by the computation an approximate LU decomposition of485

A with partial pivoting and permute the rows of A accordingly. We may assume that486

This manuscript is for review purposes only.

16 S. M. RUMP, AND T. OGITA

Fig. 5. Second methods: Norm of error bounds for the L- and U-factor based on An

the left square block Am has an LU decomposition. Then487

A = LU =
(
Am Am

)
= L

(
Um Um

)
488

and489

XL := L−1, XU =

(
U−1
m −U−1

m Um

On−m,m In−m

)
490

implies XLAXU =
(
Im Om,n−m

)
. We compute approximations X̃L ≈ XL and491

X̃U ≈ XU using an approximate LU decomposition A ≈ L̃Ũ , so that again IE :=492

X̃LAX̃U is a perturbed identity matrix. Then IE = LEUE implies493

X̃U :=

(
P Q

On−m,m In−m

)
⇒ L = X̃−1

L LE494

and495

U = UE

(
P−1 −P−1Q

On−m,m In−m

)
.496

The computational effort is O(P 2p) operations for P = max(m,n) and p = min(m,n).497

The sensitivity of the L-factor, the left square block Um and the remaining of the498

U -factor is displayed in Table 4 and is, as predicted in (2.1), similar to square A or499

the case m > n. Again we expect it to be more difficult to obtain narrow inclusions500

of L.501

Computational results are shown in Figure 6. The median of relative errors of all502

components of the L-factor, the left square part Um and the remaining of the U -factor503

are shown from left to right. The color coding is as in the previous subsections, i.e.,504

This manuscript is for review purposes only.

VERIFIED ERROR BOUNDS FOR MATRIX DECOMPOSITIONS 17

Table 4
Condition number and sensitivity of the LU-factors for m = 100 and n = 200

cond(A) 102 105 108 1011 1014

cond(L) 1.4 · 102 1.4 · 102 1.4 · 102 1.4 · 102 1.4 · 102

cond(U) 2.7 · 102 4.8 · 104 2.4 · 107 1.7 · 1010 1.3 · 1013

sensitivity(L) 1.2 · 10−14 2.5 · 10−12 1.3 · 10−9 8.4 · 10−7 6.0 · 10−4

sensitivity(U1) 3.8 · 10−15 5.4 · 10−15 7.0 · 10−15 8.3 · 10−15 9.6 · 10−15

sensitivity(U2) 9.4 · 10−15 1.3 · 10−14 1.7 · 10−14 1.9 · 10−14 2.2 · 10−14

Fig. 6. First methods: Norm of error bounds for the L- and U-factor based on A

for the red curve only standard interval arithmetic was used and the expected growth505

with the condition number can be seen.506

For the black curve the two products in X̃L(AX̃U) are computed in doubled507

precision. Supposedly, the results are better than for the case m > n because we508

performed initially two approximate LU decompositions to identify the permutations509

of columns and rows.510

In order to obtain flat curves close to maximal accuracy for all components of511

both the L- and the U -factor, we compute C1 + C2 = AX̃U in doubled precision and512

use two matrices to store the result, and then compute X̃LC1 + X̃LC2 in doubled513

precision but store the result in one matrix IE .514

Now the results are close to maximal accuracy, shown in blue, but the computing515

time of O(P 2p) operations can be improved into O(Pp2) operations. Similar as before516

we use an approximate LU decomposition Am ≈ L̃Ũm of the left square block of A.517

For approximations X̃L ≈ L̃−1 and X̃Um
≈ Ũ−1

m let IE = X̃LAmX̃Un
= LEUE . Then518

(3.10) L = X̃−1
L LE and U = L−1

E X̃LA519

using U = L−1
E X̃LLU for the latter equality. Now the computational effort is O(Pp2)520

operations.521

This manuscript is for review purposes only.

18 S. M. RUMP, AND T. OGITA

Fig. 7. Second methods: Norm of error bounds for the L- and U-factor based on Am

Computational results are shown in Figure 7. Using the same color coding the522

main difference is in the black curve, computing the two products X̃L(AX̃U) in dou-523

bled precision but storing either result in one matrix. The results in Figure 6 are524

better due to the use of the right part Um in the computations.525

The third and best method, shown in blue in Figure 7, is to store AX̃U in two526

matrices and proceed as before. The resulting curves are flat and close to the relative527

rounding error unit 10−16 for all condition numbers and all components of the L- and528

the U -factor.529

4. Cholesky decomposition. As for the Cholesky decomposition of a sym-530

metric positive definite matrix A ∈ Mn we have all necessary ingredients. We would531

like to stress that A being positive definite is not an assumption, because if so, it532

would have to be verified before starting the computation. In contrast, the property533

is verified a posteriori, i.e., if successful the matrix has been proved to be positive534

definite.535

To compute bounds for the Cholesky factor, we first use an approximate Cholesky536

factor G̃ to preconditionA into IE := XT
GAXG forXG ≈ G̃−1. We discussed in Section537

3.1 how to obtain verified inclusions for the LU decomposition IE = LEUE . That538

includes in particular the diagonal D of UE . The uniqueness of the LU and Cholesky539

decomposition implies that GE = D1/2LTE is the Cholesky factor of IE . Hence, an540

inclusion of the Cholesky factor may be computed by541

(4.1) GTEGE = IE = XT
GAXG ⇒ G = GEX

−1
G = D1/2LTEX

−1
G .542

The computational effort is O(n3) operations.543

We first show the median of the sensitivity of the Cholesky factor for 1000 samples544

in Table 5. The condition number of G is, of course, the square root of that of A,545

and the sensitivity corresponds to that predicted in (2.1). In some way it seems the546

geometric mean between the sensitivity of the L- and the U -factor.547

This manuscript is for review purposes only.

VERIFIED ERROR BOUNDS FOR MATRIX DECOMPOSITIONS 19

Table 5
Condition number and sensitivity of the Cholesky factor for different condition numbers

cond(A) 102 105 108 1011 1014

cond(G) 1.0 · 101 3.2 · 102 10.0 · 103 3.2 · 105 10.0 · 106

sensitivity(G) 6.8 · 10−16 1.8 · 10−14 4.9 · 10−13 1.4 · 10−11 4.0 · 10−10

Fig. 8. Norm of error bounds for the Cholesky factor for different condition numbers

The computational results for (4.1) are shown in Figure 8. We display the median548

of the relative errors of all components of the inclusion of the Cholesky factor for549

different condition numbers. The color coding is similar to the previous sections. For550

the red curve we use interval arithmetic to compute inclusions of IE = XT
GAXG and551

for the inclusion of G according to (4.1). As expected, errors grow with the condition552

number but still guaranteeing some 8 correct decimal figures up to condition number553

3 · 1014 and failure above.554

The black curve shows the results for computing XT
GAXG in doubled precision.555

The quality of the inclusion is better and there is no failure.556

Finally, we compute C1 + C2 = AXG in doubled precision with two results and557

XT
GC1 + XT

GC2 again in doubled precision but with one result IE . Now, shown in558

blue, for all condition numbers all components of the Cholesky factor are enclosed559

with almost maximal accuracy.560

5. QR decomposition. Assume A ∈ Mm,n with m > n to be given with full561

rank. Then there is a unique QR decomposition with orthonormal columns and upper562

triangular R with non-negative diagonal entries [14, Theorem 2.1.14]. Consider563

A :=

(
1 e

1 e+ ϕe2

)
564

with565

Q :=
1√
2

(
1 −ϕ
1 ϕ

)
and R :=

1√
2

(
2 (2 + ϕe)e

0 e2

)
.566

Then A = QR for e, ϕ ∈ R, and for ϕ = −1 and ϕ = 1 this is the unique QR decom-567

position of A(ϕ) for any e ∈ R. Hence, the computation of the QR decomposition is568

ill-posed at e = 0 because an arbitrary small perturbation causes a finite change in569

This manuscript is for review purposes only.

20 S. M. RUMP, AND T. OGITA

Q. As a consequence, a verification method is only applicable to matrices with full570

rank.571

Let A ≈ Q̃R̃ be an approximate “economy-size” QR decomposition, i.e., Q̃ ∈572

Mm,n and R̃ ∈ Mn. For X̃R ≈ R̃−1 we expect C := AX̃R to be close to unitary, so573

that CTC will be a small perturbation of the identity matrix In.574

In fact, CTC ≈ X̃T
RA

TAX̃R =: I + E is the same as preconditioning ATA by575

the inverse of the approximate Cholesky factor R̃ of ATA. However, the formulation576

CTC ≈ (X̃T
RA

T) · (AX̃R) avoids to form the matrix ATA with squared condition577

number cond(A)2.578

We use the method described in the previous section to compute an inclusion579

GE of the Cholesky factor of I + E, so that X̃T
RA

TAX̃R = I + E = GTEGE . Hence580

R := GEX̃
−1
R is the Cholesky factor of ATA, which in turn is the R-factor of the QR581

decomposition of A. An inclusion of the economy-size Q-factor is obtained by Q1 =582

AR−1 provided that R is non-singular. A second possibility is to use Q1 = AX̃RG
−1
E .583

For the full-size QR-factors note that Q = (Q1 Q2) where Q2 is the orthogonal584

complement of Q1 and, provided that A has full rank, a basis for the null space of A∗.585

In [17] several methods are discussed to compute an inclusion of a basis of the null586

space of a rectangular matrix. For Q̃2 denoting an approximation of the orthogonal587

complement of Q1, the solution X of the square linear system588

(5.1)

(
A∗

αQ̃∗2

)
X =

(
On,m−n

αIm−n

)
589

does the job [17], i.e., X spans the orthogonal complement Q2 of Q1. If A is an590

interval matrix, then this is true for every A ∈ A. We choose α within [σn(A), σ1(A)]591

to ensure that the condition number of the system matrix in (5.1) is equal to that of592

A.593

We can expect X to be numerically unitary, but not mathematically. The follow-594

ing lemma from [34] estimates the distance to an orthonormal basis.595

Lemma 5.1. Let X,Y ∈Mm,n with m > n be given. Define α := ‖I−X∗X‖ and596

δ := ‖X − Y ‖. Let V be an n-dimensional subspace of Km that contains all columns597

of Y . Then there exists Q ∈Mm,n with Q∗Q = I whose columns span V and598

‖Q−X‖ 6 α+
√

2δ.599

The bound is sharp. Note that the bound remains true even if α > 1, although that600

may not be very useful. In our practical application α is of the order of the relative601

rounding error unit u ≈ 10−16.602

The application of Lemma 5.1 is as follows. A very good approximate solution to603

(5.1) is X := Q̃2, for which also α := ‖I−X∗X‖ is close to the relative rounding error604

unit. Define Y to be the true solution of (5.1). An inclusion of Y is computed by605

verification methods. In fact, the inclusion will be of the form Q̃2 + ∆ for an interval606

matrix ∆ with small norm [32], so that δ = ‖∆‖. It follows that Q̃2±δ is an inclusion607

of the orthogonal complement Q2 to Q1. Hence, (Q1 Q2) is the full Q-factor of the608

QR decomposition of A, where the full R-factor is

(
R

Om−n,n

)
.609

For A ∈Mm,n with m < n we compute inclusions of the (full) QR decomposition610

of the square matrix Am, so that Am = QRm implies R = Q∗A. The computational611

effort for the inclusion is the same as to compute an approximate decomposition.612

This manuscript is for review purposes only.

VERIFIED ERROR BOUNDS FOR MATRIX DECOMPOSITIONS 21

To judge the computational results we first check on the median of the sensitivity613

of R and the two parts of the factor Q of A ∈M200,100 for 1000 samples. The results614

are displayed in Table 6. The factor Q is perfectly conditioned, however, sensitive615

to perturbations in A. The factor R has the same condition number as A, but is616

insensitive to small perturbations in A in accordance with (2.1). The corresponding617

data for m < n is completely similar, only Q is sensitive to perturbations in A. Thus618

we may expect more problems in the computation of narrow bounds of Q.619

Table 6
Sensitivity of the two parts of the factors Q and R for different condition numbers

cond(A) 102 105 108 1011 1014

sensitivity(Q1) 1.2 · 10−14 6.0 · 10−12 4.5 · 10−9 3.7 · 10−6 3.3 · 10−3

sensitivity(Q2) 1.7 · 10−14 8.2 · 10−12 6.1 · 10−9 5.0 · 10−6 4.5 · 10−3

sensitivity(R) 4.8 · 10−16 5.6 · 10−16 6.2 · 10−16 7.0 · 10−16 7.8 · 10−16

Fig. 9. Norm of error bounds for the Q- and R-factor for different condition numbers for m = n

Next we show the median of the relative errors of all entries of the inclusions of Q620

and R. We start with a square matrix A ∈ Mn. We first compute C = AX̃R as well621

the inclusions GEX̃
−1
R and Q = AR−1 in standard interval arithmetic. The result for622

different condition numbers is the red curve in Figure 9. We observe an increase of the623

relative errors proportional to the condition number, and as predicted less accurate624

bounds for Q.625

Secondly, we compute an inclusion C = AX̃R with doubled precision with one626

output result. The product C∗C is computed in doubled precision as well, otherwise627

we use standard interval arithmetic. The result is the black curve in Figure 9. It is628

much better than before, in particular the inclusion of R.629

Finally, we use the second possibility Q1 = AX̃RG
−1
E for the inclusion of Q1,630

where the first product Q1 = AX̃R is computed in doubled precision. The result is631

This manuscript is for review purposes only.

22 S. M. RUMP, AND T. OGITA

shown as the blue curve in Figure 9, where the black and blue curves are practically632

identical for R.633

Fig. 10. Norm of error bounds for the Q- and R-factor for different condition numbers for m > n

The results for A ∈ Mm,n with m > n are shown in Figure 10. They look quite634

similar to those in Figure 9 for square A. In particular the quality of the two parts of635

Q shows no surprises. That is also true for the case m < n, so we omit to show that636

graph.637

Until now we refrained from giving computing times of our inclusion methods,638

mainly because those are essentially dominated by the interpretation overhead in639

MATLAB. At least for one example, the QR decomposition, we show the ratio of640

computing time compared to the built-in MATLAB routine. For most problems we641

gave three inclusion methods, as for example in Figure 9. However, the timing is not642

too different, therefore we give only the time ratio for our best method compared to qr.643

As has been said this ratio is biased by the interpretation overhead, and in particular644

by the fact that our inclusion methods aim on highly accurate results. Therefore we645

also show the median relative error of the MATLAB result.646

For the following Table 7 we generated real and complex square random matrices647

with condition number 1010. From left the dimension and ratio of computing time of648

our best inclusion method together with the median relative error of all components649

of the floating-point approximation produced by [Q,R] = qr(A); are displayed, for650

real matrices on the left and for complex matrices on the right.651

As can be seen the verification method (in pure MATLAB code) is significantly652

slower than the built-in qr, but, according to Figure 9 and Table 7 also more accurate.653

Note that the accuracy of the MATLAB approximation is different from the sensitivity654

as displayed in Table 6.655

We finally show the same table for rectangular matrices A ∈ Mm,n. We set656

m := 2n and display the results in Table 8.657

The median relative error of Q computed by qr is slightly weaker than for square658

matrices, more according to Table 6. Otherwise there is not too much difference in659

This manuscript is for review purposes only.

VERIFIED ERROR BOUNDS FOR MATRIX DECOMPOSITIONS 23

Table 7
Ratio of computing times to MATLAB’s qr for different condition numbers

real input complex input

n time ratio Q R time ratio Q R

100 49.3 1.2 · 10−11 6.8 · 10−14 47.1 1.2 · 10−11 6.8 · 10−14

200 33.5 1.4 · 10−11 8.3 · 10−14 44.2 1.3 · 10−11 7.9 · 10−14

500 64.6 6.9 · 10−10 4.5 · 10−11 61.4 1.2 · 10−11 1.1 · 10−13

1000 58.3 2.6 · 10−9 1.7 · 10−8 48.2 1.4 · 10−11 1.8 · 10−13

Table 8
Ratio of computing times to MATLAB’s qr for different condition numbers

real input complex input

n time ratio Q R time ratio Q R

100 50.5 1.7 · 10−8 4.4 · 10−14 63.3 2.3 · 10−8 5.6 · 10−14

200 45.0 1.2 · 10−8 5.2 · 10−14 67.3 1.9 · 10−8 6.6 · 10−14

500 66.9 9.6 · 10−9 3.5 · 10−11 52.3 1.8 · 10−8 1.0 · 10−13

1000 52.3 8.5 · 10−9 3.0 · 10−8 56.6 2.1 · 10−8 1.7 · 10−13

the ratio of computing times or accuracy.660

6. Eigendecomposition. A verified inclusion of an individual eigenvector to a661

multiple eigenvalue matrix is out of the scope of verification methods because the662

problem is ill-posed. In case of a non-trivial Jordan block of size k, there may be only663

one eigenvector which, after an arbitrarily small perturbation, changes into up to k664

individual eigenvectors.665

Hence, the problem of computing a verified error bound for an individual eigen-666

vector is ill-posed, as well as to certify that an eigenvalue is not simple. However, an667

inclusion of a cluster and/or multiple eigenvalue becomes well posed if it is separated668

from the remaining spectrum. Then computing a basis for the corresponding invariant669

subspace is well posed as well.670

There are approaches to compute error bounds for one cluster of eigenvalues671

together with invariant subspace [32, Theorem 13.9], however, the computing time for672

the complete eigendecomposition by applying that method to each cluster is O(n4)673

operations.674

There are papers for computing inclusions of all eigenvalues and -vectors in O(n3)675

operations [25] for the symmetric positive definite case and [24] for general matrices.676

However, the given practical implementations face some problems. The algorithms677

in [33] for general and [34] for Hermitian matrices for the complete eigendecomposi-678

tion also require O(n3) operations and are numerically stable. Of course, there are679

natural limitations for many large clusters. General matrices in [33] are, similar to680

the methods in this paper, transformed into a perturbed identity matrix, whereas the681

symmetric and Hermitian case in [34] is treated by generalized perturbation bounds.682

Both algorithms handle multiple or clustered eigenvalues as follows.683

The output of either algorithm is an interval vector L, an interval matrix X and a684

cell array µ. If a cell element consists of a single element {k}, then Lk is an inclusion685

of a simple eigenvalue and X(:, k) an inclusion of a corresponding eigenvector. A686

challenge for both algorithms is to identify clusters. To that end a threshold κ can be687

specified accepting eigenvalues with distance below κ to be a cluster. For κ = 0 the688

algorithms try, if possible, to produce individual inclusions for all eigenvalues.689

This manuscript is for review purposes only.

24 S. M. RUMP, AND T. OGITA

If a cell element is a set µ` of indices, then the Lk for k ∈ µ` are identical and690

contain exactly |µ`| eigenvalues, where the set of columns Xk for k ∈ µ` span the691

corresponding invariant subspace. For symmetric or Hermitian matrix, Lemma 5.1 is692

used to ensure that X contains a unitary eigenvector basis.693

There is a difference between the results for symmetric/Hermitian and for general694

matrices. In the former case the matrix is diagonalizable so that there exist L ∈ L and695

X ∈ X with AX = XL. Thus L and X are inclusions of eigenvalues and eigenvectors.696

A general matrix A may not be diagonalizable. If a cell element µ` consists of more697

than one index, i.e., m := |µ`| > 1, then the identical elements Λ := Lk for k ∈ µ`698

contain m eigenvalues. That may be an m-fold or m distinct eigenvalues or any699

combination. In any case, the set of columns {Xk : k ∈ µ`} contains a basis Y of an700

invariant subspace of A. That implies existence of a matrix M ∈Mm with AY = YM ,701

but there may be no diagonal M with this property.702

However, the methods in [33] allow to compute a block diagonal interval matrix703

D with the property that there exist D ∈ D and X ∈ X with AX = XD. For the704

Schur decomposition discussed in Section 8 it would be important to include upper705

triangular T with the property that there exist T ∈ T and X ∈ X with AX = XT .706

However, that is not possible as eigenvectors of multiple eigenvalues need not be707

continuous, even for symmetric matrices. It was shown in [30] that the local behavior708

of an eigendecomposition of a matrix depending on several parameters may be quite709

different from the case of one parameter. The following example is adapted from [38]:710

A(e, f) :=

(
1 + f e

e 1

)
.(6.1)711

The two matrices A1 := A(e, e) and A2 := A(e, 2e) have eigenvalues 1 + e/2± e
√

5/2712

and 1 + e± e
√

2, respectively. So the eigenvalues depend continuously on e at e = 0.713

However, the corresponding orthogonal eigenvectors do not depend on e and are714 (
(1−

√
5)/2

1

)
,

(
(1 +

√
5)/2

1

)
and

(
1 +
√

2

1

)
,

(
1−
√

2

1

)
715

for A1 and A2, respectively. In other words, the computation of eigenvectors for716

multiple eigenvalues, even for symmetric matrices, is an ill-posed problem and outside717

the scope of verification methods.718

The inclusion of the eigendecomposition offers a simple way to compute the matrix719

exponential and other matrix functions, however, only for non-defective matrices.720

For detailed computational tests of inclusions for the eigenproblem see [33] and721

[34]. Here we only mention that error bounds of high quality are computed for a722

general real or complex, or symmetric or Hermitian matrix. The algorithms are723

applicable to interval matrices A as well, where the inclusions are true for every724

A ∈ A. The total computational effort is O(n3) operations.725

7. Singular value and polar decomposition. As for the eigendecomposition,726

the computation of singular vectors becomes ill-posed for multiple singular values, see727

example (6.1). Hence, as for the eigenproblem, inclusions for the subspaces span-728

ning the singular vectors corresponding to a multiple or cluster of singular values is729

computed.730

For square matrices the perturbation bounds for symmetric/Hermitian matrices731

can be adapted without too much difficulty. For A ∈ Mm,n with m > n this is still732

This manuscript is for review purposes only.

VERIFIED ERROR BOUNDS FOR MATRIX DECOMPOSITIONS 25

true for the right singular vectors. However, the left singular vectors to the m − n733

extra zero singular values need some special attention. If 0 or a numerical zero is a734

singular value, the singular vectors cannot be distinguished from those of the extra735

m−n trivial singular values. They have to be clustered in order to obtain a basis for736

a singular subspace.737

Table 9
Sensitivity of the singular value decomposition for different condition numbers

cond(A) 102 105 108 1011 1014

sensitivity(U) 9.7 · 10−14 1.5 · 10−11 5.9 · 10−9 3.2 · 10−6 2.0 · 10−3

sensitivity(Σ) 7.5 · 10−16 7.2 · 10−16 6.5 · 10−16 6.0 · 10−16 3.6 · 10−16

sensitivity(V) 9.7 · 10−14 1.5 · 10−11 5.9 · 10−9 3.2 · 10−6 2.0 · 10−3

As before we verify the rule of thumb (2.1) for the sensitivity of the singular values738

and -vectors, the results are displayed in Table 9. In the 1000 test cases we generated739

matrices with separated singular values because otherwise the problem to compute740

singular vectors becomes ill-posed. Again, the orthogonal/unitary factors become741

more and more sensitive for increasing condition number, whereas the singular values742

seem insensitive, even for large condition numbers. So extra attention seems necessary743

for the singular vectors.744

To our knowledge [34] is the only paper for computing verified bounds for the745

complete singular value decomposition of A ∈ Mm,n in O(Pp2) operations for P :=746

max(m,n) and p := min(m,n). Detailed computational results can be found in [34].747

The quality of the bounds is often close to maximal accuracy, and even for large748

clusters still some 8 decimal figures can be guaranteed.749

Bounds for the factors of the polar decomposition A = QP with unitary Q and750

positive semidefinite P follow by Q = UV ∗ and P = V ΣV ∗ using the singular value751

decomposition A = UΣV ∗.752

8. Schur decomposition. Let A = XJX−1 denote a Jordan decomposition of753

A, and let X = QR be the QR decomposition of X. Then754

(8.1) A = QTQ∗, T := RJR−1
755

is a Schur decomposition because J and R are upper triangular. The eigenvalues in756

T are sorted according to the diagonal of J .757

The real Schur decomposition A = Q′UQ′T for orthogonal Q′ and block upper758

triangular U becomes ill-posed for double eigenvalues. Consider759

A :=

(
1 0

1 1

)
760

with double real eigenvalue 1. An arbitrary small perturbation of A12 produces two761

simple real or a pair of complex eigenvalues, thus changing the block size of the factor762

U of the real Schur decomposition. Hence we restrict our attention to the complex763

Schur decomposition A = QTQ∗.764

However, for the symmetric parameterized matrix in (6.1), which is normal,765

the Schur decomposition is the eigendecomposition with discontinuous eigenvectors.766

Hence, certified bounds for the Schur decomposition are restricted to matrices with767

simple eigenvalues – otherwise facing the ill-posed Jordan decomposition.768

This manuscript is for review purposes only.

26 S. M. RUMP, AND T. OGITA

For diagonalizable A the algorithms discussed in Section 6 yield inclusions of an769

eigendecomposition A = XDX−1. Combining this with the algorithm in Section 5 for770

an inclusion of a QR decomposition of X yields inclusions for a Schur decomposition771

according to (8.1). However, only inclusions X and D of X and D are available,772

so verified error bounds for the QR decomposition of X are to be computed, which773

include those of the true X. The factor T is equal to the solution of the linear774

system TR = RD. We have to replace R and D by their computed inclusions,775

introducing an additional source of overestimation. That is also the reason why only776

for cond(A) . 1014 verified inclusions of the Schur factors can be calculated. That777

does not apply to the other decompositions, including the eigendecomposition needed778

here.779

The Schur decomposition offers the possibility to compute an inclusion of the780

departure from normality of A. To that end, only the inclusion of T = RDR−1 is781

needed.782

Fig. 11. Error bounds for the Schur decomposition for different condition numbers

We show some computational results in Figure 11, where the median relative errors783

of all components of T is the red line and those of Q the black line. As has been784

mentioned, the accuracy of the results suffers severely from the fact that only an785

inclusion X of X is available.786

To see that effect we also show the median relative errors of X and D in blue and787

cyan, respectively. As can be seen the eigenvalues are enclosed with almost maximal788

accuracy, the eigenvectors for condition numbers up to 1012, beyond condition number789

1012 the quality of the eigenvector inclusions decreases slightly. The errors in R, shown790

in magenta, are close to those of Q for condition numbers up to 1012.791

9. Takagi decomposition. We close this note by an application of the inclu-792

sion of the factors of a symmetric eigendecomposition. A complex symmetric matrix793

A ∈ Mn(C) with AT = A allows for a Takagi factorization A = UΣUT , also called794

Autonne-Takagi or symmetric singular value decomposition [14], with unitary U and795

diagonal Σ with non-negative diagonal elements. The factor Σ comprises of the sin-796

gular values of A and is unique if the diagonal elements are in nonincreasing order.797

The factor U may be replaced by US for diagonal S with S2 = I.798

Although less known, the Takagi factorization is used in several applications in799

physics and chemistry, including for example the diagonalization of mass matrices of800

This manuscript is for review purposes only.

VERIFIED ERROR BOUNDS FOR MATRIX DECOMPOSITIONS 27

Majorana fermions, quadratic fermionic Hamiltonians, the Bloch-Messiah reduction,801

cf. [6, 39] and the literature cited over there.802

It is well known that the factor U is not continuous for singular A. Consider803

A :=

(
1 0

0 e

)
804

with805

U :=

(
1 0

0 1

)
and Σ :=

(
1 0

0 e

)
if e > 0 ,806

and807

U :=

(
1 0

0
√
−1

)
and Σ :=

(
1 0

0 −e

)
if e < 0 .808

The discontinuity is forced by the non-negativity of Σ. Hence, as for the QR de-809

composition, the computation of the Takagi factorization is ill-posed at e = 0. As a810

consequence, a verification method is only applicable to matrices with full rank.811

First, we verify the rule of thumb (2.1) for the sensitivity of the Takagi factors,812

the results are displayed in Table 10. Here we use Q = orth(randn(n)) to generate813

a random complex symmetric matrices of size n = 100 with cond(A) ≈ 10k by814

D = diag(logspace(0,k,n)); A = Q.’*D*Q; A = A+A.’;815

where the last statement symmetrizes the matrix taking care of rounding errors.

Table 10
Sensitivity of the Takagi decomposition for different condition numbers

cond(A) 102 105 108 1011 1014

sensitivity(U) 2.3 · 10−13 2.9 · 10−12 9.7 · 10−10 5.3 · 10−7 3.3 · 10−4

sensitivity(Σ) 4.4 · 10−15 3.3 · 10−15 2.4 · 10−15 2.2 · 10−15 1.8 · 10−15

816

As anticipated, the factor U is sensitive to perturbations of the matrix A, while Σ is817

not. Of course, the insensitivity of Σ follows by well known perturbation results for818

singular values.819

There are several methods known in the literature to approximate the Takagi820

factors. For our purposes, the computation of verified bounds, one possibility is the821

following [9]. Let AT = A have full rank and denote the singular value decomposition822

by A = UΣV ∗. Then D := U∗AUΣ−1 is diagonal, and a computation shows that823

UD1/2 and Σ are the Takagi factors. This is our first method.824

One drawback is that the computation of D involves two matrix multiplications.825

Despite the computational effort this is a source of overestimation because the two826

factors are interval matrices U and V including the true factors U and V , respectively.827

The inclusions U and V may be computed by the methods in the previous section.828

Overestimation can be reduced by using U∗AUΣ−1 = V ∗U which is again diago-829

nal. Now only one multiplication of interval matrices is necessary, and we may expect830

better results. That is our second method.831

We finally transform the problem into a real symmetric eigenproblem, see also832

[14, 4.4.P2]. Let nonsingular AT = A ∈ Mn(C) be given, and denote A = E + iF833

This manuscript is for review purposes only.

28 S. M. RUMP, AND T. OGITA

with ET = E,FT = F and E,F ∈ Mn(R). A direct computation shows that the834

eigenvalues of the symmetric matrix835

M :=

(
E F

F −E

)
836

come in ± pairs. If

(
x

y

)
is an eigenvector to λ ∈ R, then

(
y

−x

)
is an eigenvector837

to −λ. After suitable renumbering the eigendecomposition of M is838

M

(
X Y

Y −X

)
=

(
X Y

Y −X

)(
Σ 0

0 −Σ

)
.839

A direct computation verifies that U := X + iY and V := X − iY are unitary and840

AV = UΣ. Hence the diagonal elements of Σ are the singular values of A. Finally841

AU = (E + iF)(X − iY) = AV = UΣ842

verifies that U and Σ are the factors of the Takagi decomposition. Inclusions of X843

and Y are computed with the methods for symmetric eigendecomposition presented844

in Section 6.845

Fig. 12. The Takagi decomposition, solid line median, dashed line maximum relative error

We show some computational results in Figure 12. The median relative errors of U in846

the left and Σ in the right graph computed by the three methods are the solid lines in847

red, black, and blue, respectively. As for the inclusions of U the third method seems848

best. In any case, as expected by our rule of thumb (2.1), the relative error increases849

with the condition number. The reason for the small peak at cond(A) ≈ 10 is not850

clear to us, it may be due to the construction of the test matrices. For Σ all three851

methods compute bounds of almost maximal accuracy.852

This manuscript is for review purposes only.

VERIFIED ERROR BOUNDS FOR MATRIX DECOMPOSITIONS 29

However, the numbers are slightly misleading because, for example, most elements853

of U are enclosed with high accuracy, and only few corresponding to the smallest sin-854

gular values are weaker. Thus the median reflects mostly the relative error of the855

better inclusions. Therefore, we display for both U and Σ the maximum relative856

errors as well, the dashed lines. Figure 12 shows that for the first method and condi-857

tion number beyond about 109 some inclusions have relative error close to 1, for the858

second method beyond 1014, where for the third method even for cond(A) . 1015 the859

inclusions seem to contain some information.860

For the singular values Σ below condition number 109 all bounds are of maximal861

accuracy, with some deterioration for larger condition numbers. The results of all862

three methods are of similar quality.863

Acknowledgment. The authors wish to express their heartful thanks to the864

two anonymous referees for their thorough reading and most constructive and helpful865

comments.866

REFERENCES867

[1] IEEE Standard for Floating-point Arithmetic. IEEE Std 754-2019 (Revision of IEEE 754-868
2008), pages 1–84, 2019.869

[2] Advanpix: Multiprecision Computing Toolbox for MATLAB, 2024. Code and documentation870
available at http://www.advanpix.com/.871

[3] P. Ahrens, J. Demmel, H. D. Nguyen: Algorithms for efficient reproducible floating-point872
summation. ACM Trans. Math. Software, 46: 1–49, 2020.873

[4] G. Alefeld, H. Spreuer: Iterative improvement of componentwise error bounds for invariant874
subspaces belonging to a double or nearly double eigenvalue. Computing, 36: 321–334,875
1986.876

[5] D. H. Bailey: A Fortran-90 double-double precision library.877
https://www.davidhbailey.com/dhbsoftware/.878

[6] G. Cariolaro and G. Pierobon. Bloch-messiah reduction of gaussian unitaries by Takagi factor-879
ization. Phys. Rev. A, 94: Article 062109, 2016.880

[7] T. J. Dekker: A floating-point technique for extending the available precision. Numer. Math.,881
18: 224–242, 1971.882

[8] L. Dieci, T. Eirola: On smooth decompositions of matrices. SIAM J. Matrix Anal. Appl.,883
20(3): 800–819, 1999.884

[9] L. Dieci, A. Papini, A. Pugliese: Takagi factorization of matrices depending on parameters and885
locating degeneracies of singular values. SIAM J. Matrix Anal. Appl., 43(3): 1148–1161,886
2022.887

[10] F. R. Gantmacher: The Theory of Matrices, volume 1, Chelsea, New York, 1959.888
[11] N. J. Higham: Accuracy and Stability of Numerical Algorithms, SIAM Publications, Philadel-889

phia, 2nd edition, 2002.890
[12] N. J. Higham: private communication, 2023891
[13] F. R. de Hoog, R. S. Anderssen, M. A. Lukas: Differentiation of matrix functionals using892

triangular factorization. Math. Comp., 80(275): 1585–1600, 2011.893
[14] R. A. Horn, C. R. Johnson: Matrix Analysis, second edition. Cambridge University Press,894

2013.895
[15] R. B. Kearfott, M. T. Nakao, A. Neumaier, S. M. Rump, S. P. Shary, P. van Hentenryck:896

Standardized notation in interval analysis, Computational Technologies, 15(1): 7–13, 2010.897
[16] D. E. Knuth: The Art of Computer Programming: Seminumerical Algorithms, volume 2.898

Addison Wesley, Reading, Massachusetts, 1969.899
[17] R. Kobayashi, M. Lange, A. Minamihata, S. M. Rump: Verified inclusion of a basis of the null900

space. Reliable Computing, 27: 26–41, 2020.901
[18] R. Krawczyk: Fehlerabschätzung reeller Eigenwerte und Eigenvektoren von Matrizen. Com-902

puting, 4: 281–293, 1969.903
[19] M. Lange, S. M. Rump: Faithfully rounded floating-point computations. ACM Trans. Math.904

Softw., 46(3): Article 21, 2020.905
[20] J. de Leeuw: Differentiating the QR decomposition, Preprint, 2023 (DOI: 10.13140/RG.2.2.906

19201.12640).907

This manuscript is for review purposes only.

10.13140/RG.2.2.19201.12640
10.13140/RG.2.2.19201.12640
10.13140/RG.2.2.19201.12640

30 S. M. RUMP, AND T. OGITA

[21] M. Malcolm: On accurate floating-point summation. Comm. ACM, 14(11): 731–736, 1971.908
[22] MATLAB. User’s Guide, Version 2023b, the MathWorks Inc., 2023.909
[23] O. Møller: Quasi double precision in floating-point arithmetic. BIT Numerical Mathematics,910

5: 37–50, 1965.911
[24] S. Miyajima: Fast enclosure for all eigenvalues and invariant subspaces in generalized eigenvalue912

problems. SIAM J. Matrix Anal. Appl., 35(3): 1205–1225, 2014.913
[25] S. Miyajima, T. Ogita, S. M. Rump, S. Oishi: Fast verification of all eigenpairs in symmetric914

positive definite generalized eigenvalue problem. Reliable Computing, 14: 24–45, 2010.915
[26] A. Neumaier: Interval methods for systems of equations. Encyclopedia of Mathematics and its916

Applications. Cambridge University Press, 1990.917
[27] T. Ogita, S. M. Rump, S. Oishi: Accurate sum and dot product. SIAM J. Sci. Comput., 26(6):918

1955–1988, 2005.919
[28] S. Oishi, K. Ichihara, M. Kashiwagi, T. Kimura, X. Liu, H. Masai, Y. Morikura, T. Ogita,920

K. Ozaki, S. M. Rump, K. Sekine, A. Takayasu, N. Yamanaka: Principle of Verified921
Numerical Computations. Corona Publisher, Tokyo, Japan, 2018. [in Japanese].922

[29] K. Ozaki, T. Ogita, S. Oishi: Error-free transformation of matrix multiplication with a poste-923
riori validation. Numer. Linear Alg. Appl., 23(5): 931–946, 2016.924

[30] F. Rellich: Störungstheorie der Spektralzerlegung. Math. Ann., 113: 79–91, 1994.925
[31] S. M. Rump: INTLAB – INTerval LABoratory. In Tibor Csendes, editor, Developments in926

Reliable Computing, pages 77–104. Springer Netherlands, Dordrecht, 1999.927
[32] S. M. Rump: Verification methods: Rigorous results using floating-point arithmetic. Acta928

Numerica, 19: 287–449, 2010.929
[33] S. M. Rump: Verified error bounds for all eigenvalues and eigenvectors of a matrix. SIAM J.930

Matrix Anal. Appl., 43(4): 1736–1754, 2022.931
[34] S. M. Rump, M. Lange: Fast computation of error bounds for all eigenpairs of a Hermitian932

and all singular pairs of a rectangular matrix with emphasis on eigen- and singular value933
clusters. J. Comput. Appl. Math., 434: Article 115332, 2023.934

[35] S. M. Rump, T. Ogita: On a quality measure for interval inclusions. BIT Numerical Mathe-935
matics, 64: Article 22, 2024.936

[36] S. M. Rump, T. Ogita, S. Oishi: Accurate floating-point summation part I: Faithful rounding.937
SIAM J. Sci. Comput., 31(1): 189–224, 2008.938

[37] G. W. Stewart: On the perturbation of LU, Cholesky, and QR factorizations. SIAM J. Matrix939
Anal. Appl., 14: 1141–1146, 1993.940

[38] J. Sun: Multiple eigenvalue sensitivity analysis. Linear Alg. Appl., 137/138: 183–211, 1990.941
[39] A. E. Teretenkov. Singular value decomposition for skew-Takagi factorization with quantum942

applications. Linear and Multilinear Algebra, 70(22): 7762–7769, 2022.943
[40] A. N. Tikhonov: Regularization of incorrectly posed problems. Dokl. Akad. Nauk SSSR, 153(1):944

49–52, 1963.945
[41] A. N. Tikhonov, V. L. Arsenin: Solutions of Ill-posed Problems. John Wiley & Sons, New946

York, 1977.947
[42] J. M. Wolfe: Reducing truncation errors by programming. Comm. ACM, 7(6): 355–356, 1964.948
[43] G. Zielke, V. Drygalla: Genaue Lösung linearer Gleichungssysteme. GAMM Mitt. Ges. Angew.949

Math. Mech., 26: 7–108, 2003.950

This manuscript is for review purposes only.

	Introduction
	Sensitivity of factors in a decomposition
	LU decomposition
	LU decomposition of a perturbed identity matrix
	LU decomposition of general AMm,n with m=n
	LU decomposition of general AMm,n with m > n
	LU decomposition of general AMm,n with m < n

	Cholesky decomposition
	QR decomposition
	Eigendecomposition
	Singular value and polar decomposition
	Schur decomposition
	Takagi decomposition
	References

