Project description

The aim of this project is creating new bioinspired materials, through the design, synthesis and characterization of hierarchically structured composites. Such materials consist of hard (ceramic) and soft phases (polymers and organic ligands).

Pre-structured functionalized nanoparticles received from projects A1 and A2 are assembled into a material of progressively higher hierarchical levels. The processing steps involve self-assembly, additive manufacturing (in collaboration with project C4), polymer infiltration, nano-spray drying and hot-pressing (with projects A2 and A3). The objective for the highest hierarchical level is an anisotropic brick-and-mortar structure, analogous to the one characterizing nacre and other exceptionally strong and tough natural materials. The composites, as well as their individual hierarchical levels, will be characterized both structurally (in collaboration with projects A7, A8, Z2 and Z3) and mechanically (in collaboration with projects A5, Z2 and Z3), from the nano- to the macro-scale.

The key scientific question to be addressed concerns the role played by each building unit, at the different length scales, in the material’s macroscopic features. To do so, it is imperative to determine which properties and arrangements of the building units (polymeric, ceramic and nanocomposite particles) are necessary and sufficient to attain the desired mechanical and multifunctional characteristics in the final bulk material. Gaining this knowledge will ultimately lead to the tailored design of novel nanocomposites.

 

 

 

 

 

 

 

 

 

Project leaders

Prof. Dr. Diletta Giuntini,
TUHH and TU/e
Contact

Prof. Dr. rer. nat. Gerold
Schneider,
TUHH
Contact

 Keywords

                       nanocomposite

self-assembly   

hierarchy

toughness                                                                                     ceramics                   

                                    polymer

Publications

1. D. Giuntini et al.: Defects and Plasticity in Ultra-Strong Supercrystalline Nanocomposites. Sci. Adv. 7, eabb6063 (2021) - with Z2

2. D. Giuntini et al.: Deformation Behavior of Cross-Linked Supercrystalline Nanocomposites: An in Situ SAXS/WAXS Study during Uniaxial Compression. Nano Lett. 21, 7, 2891-2897 (2021) - with Z2

3. B. Domènech et al.: Hierarchical supercrystalline nanocomposites through the self-assembly of organically-modified ceramic nanoparticles. Sci. Rep. 9, 3435 (2019) - with A1, Z2, Z3

4. A. Dreyer et al.: Organically linked iron oxide nanoparticle supercrystals with exceptional isotropic mechanical properties. Nat. Mater. 15, 522-528, 2016 - with A1, A2, Z3

... and more on the list of publications.

 

 


open as PDF.

 

Quarks & Co
Broadcast 2014-03-18
(courtesy of WDR, English translation (c) SFB 986)

A shorter version was already broadcast on 2014/01/26 at "[w] wie Wissen".