29.01.2024

Presentation Series: Train Your Engineering Network. Robert Kräuter

Image generated by DALL·E 3, using Microsoft Copilot Image Creator.

Development of a black-box soft sensor for a fluidization process

Abstract

Solids water content is an important particle property in many applications of process engineering. Its importance on the quality of pharmaceutical formulations makes an in-line measurement of the water content especially desirable in fluidization processes. However, currently available measurement techniques are difficult to calibrate and scarcely applicable in real fluidized beds. A promising strategy for in-line monitoring of the water content is thus soft sensing, a method that expresses the targeted quantity as a correlation of other more reliable measurements. In this talk, we present the development of such a soft sensor using various black-box models. Our focus lies on strategies to reduce overfitting through feature engineering and hyperparameter tuning. These models are designed for processing real experimental data from a turbulent process, addressing challenges in data filtering, undersampling, outlier detection, and uncertainty propagation.

Talk in the series “Train Your Engineering Network”.