Christina Eckel

M.Sc.
Research Assistant

Contact

Christina Eckel, M. Sc.
E-6 Elektrische Energietechnik
  • Elektrische Energietechnik
Office Hours
nach Vereinbarung
Harburger Schloßstraße 22a,
21079 Hamburg
Building HS22a, Room 2.002
Phone: +49 40 42878 2377
Logo

Research Project

Stability and Grid Control in Transmission Systems with inverter-coupled resources

Stability and Grid Control in Transmission Systems with inverter-coupled resources

Hamburg University of Technology (TUHH); Duration: 2021 to 2025

Publications

TUHH Open Research (TORE)

2024

2023

2022

Courses

Stud.IP
zur Veranstaltung in Stud.IP Studip_icon
Chemie der Trinkwasseraufbereitung (VL)
Untertitel:
Diese Lehrveranstaltung ist Teil des Moduls: Wasserchemisches Praktikum, Wasserressourcen und -versorgung
Semester:
WiSe 23/24
Veranstaltungstyp:
Vorlesung (Lehre)
Veranstaltungsnummer:
lv311_w23
DozentIn:
PD Dr. Klaus Johannsen, Ute Schuppert, Petra Weiss
Beschreibung:

In der Vorlesung wird das für die Praxis relevante wasserchemische Wissen mit Bezug auf die Wassergewinnung, -aufbereitung und -verteilung vermittelt.   

Die Themenschwerpunkte sind Löslichkeit von Gasen, Kohlensäure-Gleichgewicht, Kalk-Kohlensäure-Gleichgewicht, Entsäuerung, Mischung von Wässern, Enthärtung, Redoxprozesse, Werkstoffe sowie gesetzliche Anforderungen an die Aufbereitung.  Alle Themen werden vor dem Hintergrund der allgemein anerkannten Regeln der Technik (DVGW-Regelwerk, DIN-Normen) praxisnah behandelt.

Ein wesentlicher Teil der Veranstaltung sind Berechnungen anhand realer Analysendaten (z.B. Berechnung des pH-Wertes und der Calcitlösekapazität ).  Zu jeder Einheit gibt es Übungen und Hausaufgaben. Durch das Lösen der Hausaufgaben erhalten die Studierenden ein Feedback  und können Bonuspunkte für die Klausur erwerben.

Da Kenntnisse der Wasseraufbereitungsprozesse von großer Bedeutung sind, werden diese in Abstimmung mit der Vorlesung „Wasserressourcenmanagement“ zu Beginn des Semesters erklärt. 

Leistungsnachweis:
655 - Wasserchemisches Praktikum<ul><li>655 - Wasserchemisches Praktikum: Klausur schriftlich</li><li>855 - Verpflichtende Studienleistung Laborpraktikum Wasserchemie: schriftliche Ausarbeitung</li></ul><br>680 - Wasserressourcen und -versorgung<ul><li>680 - Wasserressourcen und -versorgung: Klausur schriftlich</li></ul><br>m876 - Wasserchemisches Praktikum<ul><li>p528 - Wasserchemisches Praktikum: Klausur schriftlich</li><li>vl98 - Verpflichtende Studienleistung Laborpraktikum Wasserchemie: schriftliche Ausarbeitung</li></ul>
ECTS-Kreditpunkte:
1
Weitere Informationen aus Stud.IP zu dieser Veranstaltung
Heimatinstitut: Institut für Wasserressourcen und Wasserversorgung (B-11)
In Stud.IP angemeldete Teilnehmer: 23
Anzahl der Dokumente im Stud.IP-Downloadbereich: 13

Supervised Theses

ongoing

2024

  • Bahe, B. (2024). Nichtlineare Stabilitätsuntersuchungen in einem leistungselektronisch dominierten elektrischen Energiesystem.

completed

2024

  • Boehm, E. (2024). Einfluss des Netzäquivalents auf die Stabilität eines Netzes mit netzbildenden und netzfolgenden Umrichtern.

  • Helmich, L. M. (2024). Entwicklung und Simulation eines Effektivwertmodells für STATCOM-Anlagen mit neuartigen Regelstrategien für Pendeldämpfungen in PowerFactory.

  • Rüter, C. (2024). Einfluss der Netzstärke auf die Kleinsignalstabilität netzbildender Umrichter mit virtueller Oszillator-Regelung.

  • Schultheiß, J. (2024). Impedanzbasierte Stabilitätsanalyse zur Bewertung der Stabilitätsgrenzen von DC- und AC-Netzen.

2023

  • Chouiter, B. (2023). Dynamic Phasor Modelling and Comparison to Classical EMT Models.

  • Helmich, L. M. (2023). Entwicklung und Simulation einer Regelstrategie für die Pendeldämpfung durch STATCOM-Geräte.

  • Kamma, J. (2023). Umrichtermodellierung zur Repräsentation von Interaktionen im Sinne der Converter-Driven Stability.

  • Mißfeldt, C. (2023). Einfluss von Zeitverzögerungen auf die Converter-Driven Stability.

  • Rosenau, Y. (2023). Einfluss netzbildender Umrichter-Regelungsstrukturen auf die "Converter-Driven Stability".

2022

  • Kumar, M. (2022). Modellierung und Vergleich des Frequenzverhaltens dezentraler Anlagen mit netzbildenden Eigenschaften oder beigestellter Schwungmasse.

  • Lim, I. (2022). Modelling and Integration of a Hydrogen Storage Power Plant in the 10-Machine New-England Power System.

  • Rieckborn, N. (2022). Modellierung des Umwandlungsprozesses eines Wasserstoffspeicherkraftwerks.