Christina Eckel

M.Sc.
Research Assistant

Contact

Christina Eckel, M. Sc.
E-6 Elektrische Energietechnik
  • Elektrische Energietechnik
Office Hours
nach Vereinbarung
Harburger Schloßstraße 22a,
21079 Hamburg
Building HS22a, Room 2.002
Phone: +49 40 42878 2377
Logo

Research Project

Stability and Grid Control in Transmission Systems with inverter-coupled resources

Stability and Grid Control in Transmission Systems with inverter-coupled resources

Hamburg University of Technology (TUHH); Duration: 2021 to 2025

Publications

TUHH Open Research (TORE)

2024

2023

2022

Courses

Stud.IP
zur Veranstaltung in Stud.IP Studip_icon
Vertiefung: Keramische Werkstoffe und Kunststoffe (HÜ)
Untertitel:
Diese Lehrveranstaltung ist Teil des Moduls: Vertiefende Grundlagen der Werkstoffwissenschaften
Semester:
SoSe 24
Veranstaltungstyp:
Übung (Lehre)
Veranstaltungsnummer:
lv1234_s24
DozentIn:
Prof. Dr. Gerold Schneider, Prof. Dr.-Ing. Robert Meißner, Dipl.-Phys., Dr.-Ing. Jasmin Koldehoff
Beschreibung:

1.Einführung

Natürliche „Keramiken“ – Steine
„Künstliche“ Keramik – vom Porzellan bis zur Hochleistungskeramik  Anwendungen von Hochleistungskeramik

2. Pulverherstellung

Einteilung derPulversyntheseverfahren
Der Bayer-Prozess zur Al2O3-Herstellung
Der Acheson-Prozess zur SiC-Herstellung
Chemical Vapour Deposition

    Pulveraufbereitung

Mahltechnik
Sprühtrockner

3. Formgebung

Arten der Formgebung
Pressen (0 - 15 % Feuchte)
Gießen (> 25 % Feuchte)
Plastische Formgebung (15 - 25 % Feuchte)

4. Sintern

Triebkraft des Sinterns
Effekt von gekrümmten Oberflächen und Diffusionswegen
Sinterstadien des isothermen Festphasensinterns
Herring scaling laws
Heißisostatisches Pressen

5. Mechanische Eigenschaften von Keramiken

Elastisches und plastischesMaterialverhalten
Bruchzähigkeit – Linear-elastische Bruchmechanik
Festigkeit - Festigkeitsstreuung

6. Elektrische Eigenschaften von Keramiken

Ferroelektische Keramiken

Piezo-, ferroelektrischeMaterialeigenschaften
Anwendungen

Keramische Ionenleiter

Ionische Leitfähigkeit
Dotiertes Zirkonoxid in der Brennstoffzelle und Lambdasonde


Ziele des Vorlesungsteils sind:

  • Kennen der wesentlichen Eigenschaften vonKunststoffen
  • Verständnis über Verarbeitung und Gebrauch derKunststoffe
  • Fähigkeit Kunststoffe zu bewerten und fürAnwendungen auszuwählen mit entsprechender Fertigungsmethode
  • Kenntnisse über FaserverbundwerkstoffeHerstellung, Verarbeitung und Eigenschaften

1. Kunststoffeim Ingenieurwesen

Eine kurzeGeschichte der Kunststoffe

WiesoKunststoffe?

Kunststoffindustrie

Leichtbau durchKunststoffe

2. Aufbaudes Makromoleküls

Konstitution
Kettenkonfiguration
Kettenkonformation
Potentiale
Bindungen

3. Synthese,Rheologie

Polymerisation
Polyaddition
Polykondensation
Molekulargewicht und Verteilung
Vernetzung
Einsatztemperaturen und Verarbeitung
Prüfmethoden DSC /DMTA

4. Kunststoffverarbeitung

Zusammenhänge von Viskosität undVerarbeitung von Kunststoffen
Die wesentlichen Fertigungstechnologien und Verarbeitungsparameter: Extrudieren,Spritzgießen, Kalandrieren, Blasfolien, Blasformen, Streckblasen
Welche Produkte mit welcher Fertigungsmethode hergestellt werden können

5. Verbundwerkstoffe

Kurzfaserverstärkt und Spritzguss
Faserarten und Festigkeit
Elastische Eigenschaften von FKV und Anisotropie

6. MechanischeEigenschaften

Verstehen des Werkstoffverhaltensvon Polymeren unter mechanischer Last
Wissen das Kunststoffe ein stark zeitabhängiges Verformungsverhalten besitzenund kenne der Gründe.

Messverfahren zur Bestimmung des Lastverhaltens (Zugversuch,Kriech- oder Relaxationsversuch)

7. Kunststoffe und Umwelt

Verstehen der Vor- und Nachteilevon Polymeren in Hinsicht auf Umweltaspekte

Wissen das Kunststoffe aufverschiedenen Wegen verwertet werden können

Innovative Ansätze zurVerbesserung der Ökobilanz kennen

Leistungsnachweis:
300 - Vertiefende Grundlagen der Werkstoffwissenschaften<ul><li>300 - Vertiefende Grundlagen der Werkstoffwissenschaften: Klausur schriftlich</li></ul>
ECTS-Kreditpunkte:
1
Weitere Informationen aus Stud.IP zu dieser Veranstaltung
Heimatinstitut: Institut für Keramische Hochleistungswerkstoffe (M-9)
In Stud.IP angemeldete Teilnehmer: 11
Anzahl der Dokumente im Stud.IP-Downloadbereich: 11

Supervised Theses

ongoing

2024

  • Bahe, B. (2024). Nichtlineare Stabilitätsuntersuchungen in einem leistungselektronisch dominierten elektrischen Energiesystem.

completed

2024

  • Boehm, E. (2024). Einfluss des Netzäquivalents auf die Stabilität eines Netzes mit netzbildenden und netzfolgenden Umrichtern.

  • Helmich, L. M. (2024). Entwicklung und Simulation eines Effektivwertmodells für STATCOM-Anlagen mit neuartigen Regelstrategien für Pendeldämpfungen in PowerFactory.

  • Rüter, C. (2024). Einfluss der Netzstärke auf die Kleinsignalstabilität netzbildender Umrichter mit virtueller Oszillator-Regelung.

  • Schultheiß, J. (2024). Impedanzbasierte Stabilitätsanalyse zur Bewertung der Stabilitätsgrenzen von DC- und AC-Netzen.

2023

  • Chouiter, B. (2023). Dynamic Phasor Modelling and Comparison to Classical EMT Models.

  • Helmich, L. M. (2023). Entwicklung und Simulation einer Regelstrategie für die Pendeldämpfung durch STATCOM-Geräte.

  • Kamma, J. (2023). Umrichtermodellierung zur Repräsentation von Interaktionen im Sinne der Converter-Driven Stability.

  • Mißfeldt, C. (2023). Einfluss von Zeitverzögerungen auf die Converter-Driven Stability.

  • Rosenau, Y. (2023). Einfluss netzbildender Umrichter-Regelungsstrukturen auf die "Converter-Driven Stability".

2022

  • Kumar, M. (2022). Modellierung und Vergleich des Frequenzverhaltens dezentraler Anlagen mit netzbildenden Eigenschaften oder beigestellter Schwungmasse.

  • Lim, I. (2022). Modelling and Integration of a Hydrogen Storage Power Plant in the 10-Machine New-England Power System.

  • Rieckborn, N. (2022). Modellierung des Umwandlungsprozesses eines Wasserstoffspeicherkraftwerks.