[176835]
Title: Inference in Graded Bayesian Networks.
Written by: Robert Leppert and Karl-Heinz Zimmermann
in: <em>arXiv</em>. January (2019).
Volume: Number:
on pages:
Chapter:
Editor:
Publisher:
Series: https://arxiv.org/pdf/1901.01837.pdf
Address:
Edition:
ISBN:
how published: 19-90 LeZi19a
Organization:
School:
Institution:
Type:
DOI:
URL:
ARXIVID:
PMID:

[BibTex]

Note: khzimmermann, AEG

Abstract: Machine learning provides algorithms that can learn from data and make inferences or predictions on data. Bayesian networks are a class of graphical models that allow to represent a collection of random variables and their condititional dependencies by directed acyclic graphs. In this paper, an inference algorithm for the hidden random variables of a Bayesian network is given by using the tropicalization of the marginal distribution of the observed variables. By restricting the topological structure to graded networks, an inference algorithm for graded Bayesian networks will be established that evaluates the hidden random variables rank by rank and in this way yields the most probable states of the hidden variables. This algorithm can be viewed as a generalized version of the Viterbi algorithm for graded Bayesian networks.