Institute for Reliable Computing
Head:
Prof. Dr. Siegfried M. Rump
Ill-coonditioned linear systems, time [sec]
true | linear system | maximum | ||||
dimension | cond. number | verified [sec] | rel.error | |||
10 | 1.6e+013 | 0.13 | 2.0e-015 | |||
20 | 5.5e+027 | 0.22 | 5.0e-013 | |||
30 | 4.3e+042 | 0.40 | 1.1e-011 | |||
40 | 3.2e+057 | 0.7 | 1.7e-008 | |||
50 | 4.3e+072 | 1.1 | 2.8e-009 | |||
100 | 2.9e+148 | 4.5 | 4.4e-002 |
If you are interested in extremely ill-conditioned examples, consider
A = [ | -5046135670319638, | -3871391041510136, | -5206336348183639, | -6745986988231149 ; |
-640032173419322, | 8694411469684959, | -564323984386760, | -2807912511823001 ; | |
-16935782447203334, | -18752427538303772, | -8188807358110413, | -14820968618548534 ; | |
-1069537498856711, | -14079150289610606, | 7074216604373039, | 7257960283978710 ]; |
For details, see randmat.m. With a condition number of about 1065, this is too much for the algorithm implemented in INTLAB.
Institute for Reliable Computing
Hamburg University of Technology
Am Schwarzenberg-Campus 3
21071 Hamburg
Germany