
VERIFIED ERROR BOUNDS FOR SPARSE SYSTEMS PART II:1

INERTIA-BASED BOUNDS, LEAST SQUARES AND NONLINEAR2

SYSTEMS∗3

SIEGFRIED M. RUMP†4

Abstract. Verification methods provide mathematically correct error bounds for the solution5
of a numerical problem. That includes the proof of solvability of the problem and often uniqueness6
of the solution within the computed bounds. There are many verification methods for standard7
problems in numerical analysis, including linear and nonlinear systems of equations, matrix decom-8
positions, eigenproblems, local and global optimization, ordinary and partial differential equations.9
Many of those verification methods are included in INTLAB, the Matlab/Octave toolbox for reliable10
computing. Despite several efforts, the solution of general sparse linear systems is an open problem.11

In Part I of this note we presented an algorithm for general real or complex sparse linear systems12
with condition numbers up to the limit 1016 in double precision. That algorithm splits into three13
subalgorithms for symmetric positive definite, symmetric indefinite and general input matrix A. It14
is based on a mathematically correct lower bound on the smallest singular value σmin(A).15

In this Part II we use a method published by the author in 1995 based on the inertia of a16
symmetric matrix. In contrast to the previous approach a key point is, as in Part I, a factorization17
L1L2 such that L1 and L2 have identical sets of singular values with the smallest one close to18
σmin(A)

1/2. Numerical evidence suggests that the method is often slower than that in Part I,19
however, a little more stable. That means, for some of the few cases where the method in Part I20
could not compute verified bounds successfully, the method in this Part II succeeded.21

Furthermore we show how to compute inclusions with almost maximal accuracy for all entries,22
i.e., all bounds differ by few bits. That is based on a fast method to compute accurate approximations23
and bounds for extremely ill-conditioned dot products with a very efficient Matlab implementation.24

Moreover algorithms are given to compute verified error bounds for a least squares problem and25
an underdetermined system of linear equations with sparse input matrix. Furthermore, we show26
how to compute verified error bounds for the solution of a system of nonlinear equations with sparse27
Jacobi matrix. In all cases the algorithms for square linear systems of Part I and this Part II can be28
used.29

Key words. sparse linear systems, nonlinear systems, verification methods, least squares,30
underdetermined linear systems, inertia, mathematically correct error bounds, accurate dot products,31
INTLAB32

MSC codes. 65G20, 65F9933

1. Introduction. This paper in two parts presents verification methods for the34

solution of a linear system with sparse input matrix, i.e., the computation of rigor-35

ous error bounds for the solution. The bounds are computed in pure floating-point36

arithmetic and they are true with mathematical certainty. That includes the proof of37

solvability of the problem and uniqueness of the solution within the computed bounds.38

For overviews on verification methods cf. [26, 41, 29] and the literature cited over39

there. Many verification algorithms are included in INTLAB [39], the Matlab/Octave40

toolbox for reliable computing.41

As mentioned in Part I, a verification method for sparse linear systems is part of42

the Grand challenges [27]. Although we cannot expect a general purpose algorithm,43

competitive known attempts such as in [43] work only for symmetric positive definite44

matrices.45

In Part I we presented the splitting of the input matrix A in two factors A ≈ L1L246

∗Submitted to the editors DATE.
†Institute for Reliable Computing, Hamburg University of Technology, Am Schwarzenberg-

Campus 3, Hamburg 21073, Germany, and Faculty of Science and Engineering, Waseda University,
3–4–1 Okubo, Shinjuku-ku, Tokyo 169–8555, Japan (rump@tuhh.de).

1

This manuscript is for review purposes only.

mailto:rump@tuhh.de

2 S. M. RUMP

based on some LDLT -decomposition. A key to a successful verification method is to47

compute accurate of residuals, here ∥A −L1L2∥2. The advantage of the splitting into48

two factors is that each entry of the residual A − L1L2 is a dot product, so that fast49

and accurate methods to compute accurate bounds for the residual norm can be used.50

The methods in Part I and II explore the ideas in [37, 38, 40] published in the51

1990’s. For the time being the algorithms for LDLT -decomposition were not stable52

enough to allow for good verification methods. Nowadays good scaling and equilibra-53

tion routines are available [8, 9] making those methods attractive. That was observed54

by Terao and Ozaki [46] and triggered both parts of this note.55

One key of our methods is the following theorem [38, Theorem 1.1]:56

Theorem 1.1. Let symmetric A ∈ Rn×n, 0 < λ̃ ∈ R and L̃1, D̃1, L̃2, D̃2 ∈ Rn×n be57

given. If the inertia of D̃1 and D̃2 are equal, then for any matrix norm58

(1.1) σmin(A) > λ̃ −max{∥A − λ̃I − L̃1D̃1L̃
T
1 ∥, ∥A + λ̃I − L̃2D̃2L̃

T
2 ∥}.59

If all eigenvalues of D̃1 are positive, then60

(1.2) σmin(A) > λ̃ − ∥A − λ̃I − L̃1D̃1L̃
T
1 ∥.61

The proof is clear from the fact that the inertia of L̃kD̃kL̃
T
k and D̃k coincide for62

k ∈ {1,2}. We use “tilde” to indicate that approximate factorizations are used.63

An application to symmetric (positive definite) A sets G̃ ∶= L̃T1 and D̃1 = I, such64

that (1.2) implies65

(1.3) σmin(A) > s̃ − ∥A − s̃I − G̃T G̃∥ =∶ %66

for an approximate Cholesky decomposition A − s̃I ≈ G̃T G̃. This certifies a lower67

bound % of the smallest singular value σmin(A) based on some approximation s̃. If %68

is positive it proves positive definiteness of A as well.69

That approach for symmetric (positive definite) A was further explored in [43].70

It is appealing that a priori bounds for ∥A − s̃I − G̃T G̃∥2 are available at practically71

no cost solely based on the diagonal of A. This is based on [6], see also [11, Theorem72

10.5]. In Lemma 2.5 and Corollary 2.6 in Part I of this note we improve the bound73

% by using linear estimates on the rounding error of dot products [16, 17, 18] and a74

special application of Perron-Frobenius Theory.75

Another application [40, 46] of Theorem 1.1 gives a lower bound on σmin(A) of a76

general matrix A by using the augmented matrix B ∶= ⎛⎝
0 AT

A 0

⎞
⎠. The eigenvalues77

of B are ±σk(A) so that the inertia of B is known to be (−n,0, n) for nonsingular A.78

Hence79

(1.4) σmin(A) = σmin(B) > s̃ − ∥B − s̃I − L̃D̃L̃T ∥ =∶ %80

for an anticipated lower bound s̃ of σmin(A) = σmin(B) is true if D̃ has n positive81

eigenvalues for an approximate LDLT -decomposition B− s̃I ≈ L̃D̃L̃T . Note that % > 082

implies that B has full rank and therefore A is nonsingular.83

If σmin(A) ⩾ % > 0, then for an approximate solution x̃ of a linear system Ax = b84

it follows85

∥A−1b − x̃∥∞ ⩽ ∥A−1b − x̃∥2 ⩽ %−1∥b −Ax̃∥286

as noted in Part I. However, for ill-conditioned A that bound may be quite some87

overestimation. Therefore it is improved by a residual iteration as described in Section88

This manuscript is for review purposes only.

VERIFIED ERROR BOUNDS FOR SPARSE SYSTEMS PART II 3

4 of Part I. If accurate dot products are available, often close to maximally accurate89

entrywise bounds for the solution are computed, i.e., the left and right bounds differ90

by few bits. In our examples that is sometimes not the case, and to that end we91

present a further improvement of the accuracy of the bounds at the end of Section 2.92

In Part I of this note we treat three cases separately, namely symmetric (positive93

definite), symmetric indefinite and general matrices. As has been explained “positive94

definite” is not an assumption but a property proved by the method a posteriori. In95

this Part II we will improve on the second and third case, where both are based on a96

factorization F1F2 with σmin(F1) = σmin(F1) ≈
√
σmin(A). More precisely, F2 = SFT197

for a signature matrix S, i.e., real diagonal S with entries ±1 on the diagonal. Hence,98

the factors have identical sets of singular values and the inertia of F1F2 is equal to99

that of S. The methods are based on that together with estimates on the error of the100

factorization F1F2 and Theorem 1.1.101

That sounds simpler than the methods presented in Part I. However, there is no102

clear picture. Often the methods in Part I are faster, sometimes much faster, but103

those in this Part II seem more often successful. We elaborate on that in several104

numerical examples in Section 9.105

As in Part I our primary target is that our algorithm ends successfully, i.e., verifies106

non-singularity of the input matrix and computes error bounds for the solution of the107

linear system. Our algorithms are tuned to that goal accepting some penalty in108

computing time. Besides the mathematically rigorous verification, the second focus109

is to compute accurate bounds for the solution.110

Our notation is as in Part I. In particular we assume a set of floating-point111

numbers F with an arithmetic according to the IEEE754 floating-point standard [13].112

We use double precision (binary64) in a nearest rounding1 with relative rounding error113

unit u = 2−53 ≈ 10−16, and we use directed rounding downwards (towards −∞) and114

upwards (towards +∞). In INTLAB [39] the command setround(-1) switches the115

rounding to downwards. That means that henceforth the result of all floating-point116

operations is executed in rounding downwards. That includes in particular vector and117

matrix operations. Similarly, setround(1) switches the rounding to upwards.118

We use float(⋅) to indicate the result of an expression with all operations executed119

in floating-point. If the order of execution is not unique, results are true for any order.120

We borrow some results of part I of this note as follows.121

Part I description122

(1.10) AT = A ⇒ ∣λk(A +E) − λk(A)∣ ⩽ ∥E∥2(1.5)123

(3.2) equilibration of a symmetric matrix(1.6)124

(3.3) equilibration of a general matrix(1.7)125

(3.5) [L,D,p] = ldl(A,thresh,′ vector′);(1.8)126

(3.7) remedy for LDLT -decomposition(1.9)127

(7.1) decomposition of D(1.10)128

(2.10) norm of residual using a priori bounds(1.11)129

(3.9) approximation of smallest singular value(1.12)130

The left-most column is the reference used in this Part II of our note.131

1Our results in rounding to nearest are true for any rounding of ties.

This manuscript is for review purposes only.

4 S. M. RUMP

We begin with an alternative method to compute accurate approximations and132

inclusions of residuals. That is paramount to our methods. Using this we show how133

to improve even more the accuracy of our inclusions. This leads to inclusions which134

are almost always and for all entries maximally accurate.135

After discussing how to compute the inertia of the block matrix D of an LDLT -136

decomposition we explain our alternative method for symmetric and for general input137

matrix. Based on that we show how to compute inclusions of the solution of a least138

squares problem and of an underdetermined system of equations. We present our139

second Algorithm VerifySparselss0 to compute rigorous error bounds for a linear140

system with square or rectangular, real or complex sparse matrix and multiple right141

hand sides.142

Numerical examples for test matrices out of [5] as well as for randomly generated143

matrices are shown. We close this note with concluding remarks and further open144

problems.145

2. Approximation and estimation of matrix residuals. A key point to146

our methods are upper bounds on the spectral norm of some residual AB − C for147

compatible matrices A,B,C. Those are based on accurate dot products, with or148

without error bound. To that end any of the many accurate dot product algorithms149

is suitable. The are Matlab implementations, however, they suffer from interpretation150

overhead, in particular for sparse data. We used Advanpix [12] in Part I this note, a151

multiple-precision Matlab package emulating a large number of Matlab’s algorithms.152

The number d of decimal digits of precision can be freely specified by mp.Digits(d).153

However, according to [12] the precision in use is d decimal digits plus some guard154

digits, but there is no specific information about the accuracy of a result. Moreover,155

for a general specification mp.Digits(d) the package does not respect the rounding156

mode.157

To that end there is one exception, namely mp.Digits(34). That is a particularly158

fast implementation of extended precision arithmetic with relative rounding error unit159

2−113 according to the IEEE754 standard [13]. That implementation respects the160

specified rounding mode, for the arithmetic operations as well as for the type cast161

double(⋅) from mp to double precision. Thus the code162

setround(−1); Q = double(abs(mp(A) ∗ B − C));
setround(+1); Q = max(Q,double(abs(mp(A) ∗ B − C)));

163

computes a floating-point matrix Q such that ∣AB −C ∣ ⩽ Q is true for the real matrix164

AB − C using entrywise absolute value and comparison, see Lemma 2.4 in Part I of165

this note.166

The main reason to use the toolbox Advanpix [12] in Part I was to show a fair167

comparison with [46] because it was also used in there. However, in this Part II we168

use higher precision to achieve even more accurate bounds. That seems not possible169

in [12].170

An alternative to Advanpix [12] is Matlab’s multiple precision package vpa. How-171

ever, that is very slow, see the timing in Table 1.172

Recently we work [19, 20] on a new algorithm improving on [32]. The mathe-173

matical basis for the accurate computation of a dot product aT b of a, b ∈ Fn is as174

follows. In [47] an absolute splitting of vectors was introduced, following the scheme175

in Figure 1. The vectors a, b are split into high and low order parts a = p+ q, b = r + s176

in such a way that the dot product pT r of the high order parts is computed without177

error in floating-point. The constant µ determines the splitting and is chosen such178

This manuscript is for review purposes only.

VERIFIED ERROR BOUNDS FOR SPARSE SYSTEMS PART II 5

Fig. 1. The Zielke/Drygalla scheme to extract high and low order parts

that all products piri and their sum reside in the range of digits of one floating-point179

number in the given format. That method was analysed in [44] and is also used for180

reproducible results [2].181

One specific advantage of the absolute splitting is the applicability to matrix182

products. The recursive application leads to the following Ozaki scheme for the matrix183

product AB of two floating-point matrices. It was originally published in [30, 34, 35]184

with improvements in [31, 32]. In the first step A is split into k + 1 parts185

(2.1) A = A(1) +A(2) + . . . +A(k) +A(k)186

where each part A(i) holds a limited range of mantissa digits and A(k) is the least187

significant part containing the remainder. A similar splitting is applied to B. The188

ranges for the mantissa digits in A(i) and B(j) are chosen in such a way that all189

the individual matrix products A(i)B(j) are computed error-free independent of the190

order of evaluation.2 Ozaki et al. [34, 33, 32] exploited this by computing AB as the191

unevaluated sum of (k+1)(k+2)
2

individual matrix products192

(2.2) AB = ∑
i+j⩽k+1

A(i)B(j) +
k

∑
i=1

A(i)B(k+1−i) +A(k)B

´¹¹¹¸¹¹¶
remainder terms

.193

where the sum of these is realized via an accurate summation algorithm, for instance194

[3, 25, 7, 28, 44]. Then the overall error is determined by the rounding errors in the195

computation of the k + 1 remainder terms which are least significant. By using the196

particular splitting approach proposed in [34], one can expect the error to be roughly197

of the size (2nu)k/2+1∣A∣∣B∣, where u denotes the relative rounding error unit. Hence,198

with increasing k there is a significant increase in the precision.199

A major advantage of Ozaki’s scheme over other approaches for computing ac-200

curate matrix-matrix products is the efficient use of highly optimized level-3 BLAS201

routines. For algorithms based on vector transformations, such as Dot2 [28], reaching202

2This is true for standard matrix multiplication but requires further modifications to work with
asymptotically faster approaches such as the Strassen or the Coppersmith–Winograd algorithm.

This manuscript is for review purposes only.

6 S. M. RUMP

peak performance is more difficult and requires to perform optimizations by hand. A203

second benefit of Ozaki’s scheme is the relatively low computational complexity for204

small k. The biggest drawback is that the computational complexity and the required205

memory increase quadratically with k.206

In [19, 20] we discuss various improvements to the original Ozaki scheme. The207

most important for this note is to specify a precise splitting point. When compared to208

the original splitting by Ozaki’s methods, this yields roughly an additional precision209

of k digits. Moreover, instead of the infinity norm of the respective column or row210

vectors, we use the Euclidean norm to determine suitable splitting parameters. This211

often gives another factor two in precision.212

The implementation in Algorithm prodK is pure Matlab code and due to Marko213

Lange [19, 20]. Despite the interpretation overhead it is faster than the mex-files used214

in Advanpix [12]. Timing of vpa, mp and prodK for full matrices is shown in Table215

1. As can be seen, for full matrices vpa is much slower than mp, and for little larger

Table 1
Timing ratio for full matrix multiplication A,B ∈ Fn×n

real data complex data

n tvpa/tmp tmp/tprodK tprodK tvpa/tmp tmp/tprodK tprodK

100 464 0.9 0.02 236 3.1 0.03

300 326 18.0 0.03 220 10.8 0.05

1000 306 30.1 0.21 206 62.6 0.48

216
dimension prodK is significantly faster than mp.217

For sparse matrices much effort is necessary to ensure an efficient memory man-218

agement. To that end Marko Lange provided a special implementation spProdK.219

Timing of vpa, mp and spProdK for sparse matrices is shown in Table 2 for matrices220

with some 100 nonzero entries per row.

Table 2
Timing ratio for sparse matrix multiplication A,B ∈ Fn×n

real data complex data

n tvpa/tmp tmp/tspProdK tspProdK tvpa/tmp tmp/tspProdK tspProdK

1000 1325 0.3 0.06 1010 0.3 0.10

3000 2437 1.0 0.08 3466 0.6 0.09

10000 - 0.6 0.25 - 0.8 0.22

30000 - 1.0 0.53 - 1.0 0.49

221

For dimension 10,000 and larger vpa stopped with memory problems. However, vpa222

would only be an option to compute accurate approximations, but it is not suitable223

for verified inclusions because it does not allow the computation of error bounds. The224

same is true for Advanpix except for extended precision using mp.Digits(34).225

This manuscript is for review purposes only.

VERIFIED ERROR BOUNDS FOR SPARSE SYSTEMS PART II 7

For prodK and similarly for spProdK typical calls are226

(2.3)

res = prodK(L,U,−1,A,k); LU −A ≈ res
[res,err] = prodK(L,U,−1,A,k); LU −A ∈ res ± err
[res,err] = prodK(A,x,A,y,−1,b,k); Ax +Ay − b ∈ res ± err
res = prodK(A,x,−1,b,k,′ OutputTerms′,2); Ax − b ≈ res{1} + res{2}

227

For the first pairs of input parameters p1, q1, p2, q2, . . . the value ∑piqi will be com-228

puted, where the each of the first parameters may be a scalar. For one output pa-229

rameter res the result will be approximated in about (k/2+1)-fold precision. For two230

output parameters, res ± err is a correct inclusion, also computed in (k/2 + 1)-fold231

precision. Finally, ′OutputTerms′,m specifies that the result is stored in a cell array232

with m members. That corresponds to an unevaluated sum of m addends.233

In (1.4) in Part I we introduced a notation for the approximation and inclusion234

of a residual Ax − b with sample Matlab/INTLAB code in (1.5). Here we extend the235

notation allowing evaluation in higher precision. The subindices k,1 indicate that the236

expression is evaluated in k-fold precision and rounded into working precision. The237

last parameter k in the calls of prodK and spProdK imply a result “as if” evaluated238

in k/2 + 1-fold precision. Therefore using spProdK sample Matlab/INTLAB code is239

(2.4)

JexprKk,1 res = spProdK(A,x,−1,b,2 ∗ (k − 1));
⟪expr⟫k,1 [res,err] = spProdK(A,x,−1,b,2 ∗ (k − 1));

res = midrad(res,err);
240

For compatible matrices A,B,C we borrow the function NormBnd in (1.8) and the241

code in (2.16) of Lemma 2.7 in Part I to bound ∥AB −C∥2:242

(2.5)

setround(−1); Q = abs(A ∗ B − C);
setround(+1); Q = max(Q,abs(A ∗ B − C));
beta = NormBnd(Q,symm);

243

The second parameter symm in the function NormBnd is chosen to be true if AB −C244

is symmetric/Hermitian. A bound ∥AB −C∥2 ⩽ γ computed in higher precision as in245

(2.17) of Lemma 2.7 in Part I is now replaced by246

(2.6)

[res,err] = spProdK(A,B,−1,C,k);
setround(1)
gamma = NormBnd(abs(res) + err,symm);

247

Then ∥AB−C∥2 ⩽ γ because the sum abs(res)+err in the last statement is computed248

in rounding upwards and ∥M∥2 is monotone for nonnegative M .249

As explained above we work with a factorization A ≈ L1L2 so that the entries250

of the residual L1L2 −A consist of dot products. For ill-conditioned input matrix it251

might be necessary to compute an upper bound α of the spectral norm of a residual252

LDLT −A. Here extra care is necessary because now the product of three matrices is253

involved. The following code in Table 3 computes an upper bound α of ∥LDLT −A∥2.254

255

The proof of correctness is as follows. The first line yields matrices C,C2,E1 with256

∣C1 +C2 −DLT ∣ ⩽ E1257

This manuscript is for review purposes only.

8 S. M. RUMP

function p = residualBoundLDLT(A,L,D)

[C1,C2,E1] = spProdK(D,L’,2);

[C,E2] = spProdK(L,C1,L,C2,-1,A,2);

alpha1 = NormBnd(abs(C)+E2,false);

setround(1)

alpha = NormBnd(L,false)*NormBnd(E1,false) + alpha1;

end % function residualBoundLDLT

Table 3
Computation of an upper bound α of ∥LDLT

−A∥2.

with entrywise absolute value and comparison. The matrix pair (C1,C2) approximates258

DLT as an unevaluated sum which corresponds to quadruple precision. The matrices259

C,E2 in the next line satisfy260

∣LC1 +LC2 −A −C ∣ ⩽ E2 .261

The next line uses Algorithm NormBnd from Table 1 in Part I of this note and computes262

α1 with ∥∣C ∣ +E2∥2 ⩽ α1 so that finally263

∥LDLT −A∥2 = ∥L(DLT −C1 −C2) +C +L(C1 +C2) −A −C∥2
⩽ ∥L∥2∥E1∥2 + ∥ ∣C ∣ + ∣L(C1 +C2) −A −C ∣ ∥2
⩽ ∥L∥2∥E1∥2 + ∥ ∣C ∣ +E2 ∥2
⩽ ∥L∥2∥E1∥2 + α1

264

is true because first summand in the final line of Algorithm residualBoundLDLT265

ensures ∥L∥2∥E1∥2 ⩽ NormBnd(L,false) ∗ NormBnd(E1,false) and because the sum266

in the last line is computed in rounding upwards. The extra parameter “false” in267

NormBnd indicates that the input matrix is not necessarily symmetric. We choose not268

to calculate ∥LE1∥2 but to bound it by ∥L∥2∥E1∥2 to save a matrix multiplication.269

Since E2 is very small this does no harm. Note that due to rounding errors E2 need270

not be symmetric.271

Accurate bounds for matrix residuals are mandatory to compute accurate error272

bounds for the solution of a linear system. In Section 4 in Part I of this note we273

introduced in Table 1 the function ErrorBound. It stores an approximate solution of274

A−1b in two parts x̃, ỹ such that the unevaluated sum x̃+ ỹ produces a small residual275

% = ∥Ax̃ +Aỹ − b∥2. The computation of % is very ill-conditioned and requires at least276

double the working precision. To that end mp.Digits(34) is sufficient to improve an277

approximation and the inclusion.278

In order to obtain almost always error bounds close to maximal accuracy for all279

entries of the solution, we follow [36] and store an approximation in three parts x̃, ỹ, z̃.280

Then the residual % = ∥Ax̃ +Aỹ +Az̃ − b∥2 is even more ill-conditioned. Using twice281

the working precision is not sufficient, i.e., when using mp.Digits(34) there would282

be no improvement whether using two or three parts for the approximation.283

A higher precision can be specified in mp, however, there is not enough information284

about the arithmetic in use to compute valid error bounds. In contrast, higher pre-285

cision can be specified in prodK and spProdK to compute an accurate approximation286

and with the possibility to obtain verified error bounds. For example, an inclusion of287

∥Ax̃ +Aỹ +Az̃ − b∥2 is computed by288

[c,e] = spProdK(A,xs,A,ys,A,zs,−1,b,k)289

This manuscript is for review purposes only.

VERIFIED ERROR BOUNDS FOR SPARSE SYSTEMS PART II 9

implying that290

∣Ax̃ +Aỹ +Az̃ − b − c∣ ⩽ e291

is satisfied for all entries. The parameter k specifies that (k/2 + 1)-fold precision is292

used. For an approximation in three parts k = 4 corresponding to 3-fold precision293

is suitable. This leads to an improved and very accurate version ErrorBound3 of294

Algorithm ErrorBound in Table 1 in Part I of this note. Algorithm ErrorBound3 is295

given in Table 4. If necessary, the steps 6 and 7 may be repeated two or three times.296

The implementation of J⋅Kk,1 follows (2.4).

1 [x̃, δ] = ErrorBound3(A, b, s,“solve“)
2 x̃ = solve(A, b) % A−1b ≈ x̃
3 ỹ = solve(A, Jb −Ax̃K2,1) % A−1b ≈ x̃ + ỹ
4 [x̃, ỹ] = TwoSum(x̃, ỹ)
5 z̃ = solve(A, Jb −Ax̃ −AỹK2,1) % A−1b ≈ x̃ + ỹ + z̃
6 [x̃, ỹ, z̃] = spProdK(1, x̃,1, ỹ,1, z̃,4) % A−1b ≈ x̃ + ỹ + z̃
7 z̃ = solve(A, Jb −Ax̃ −Aỹ −Az̃K3,1) % A−1b ≈ x̃ + ỹ + z̃
8 setround(-1); % = abs (JAx̃ +Aỹ +Az̃ − bK3,1)
9 setround(+1); % = max (% , abs (JAx̃ +Aỹ +Az̃ − bK3,1))

11 δ = ∣ỹ∣ + ∥%∥∞/s

Table 4
Improved residual iteration and inclusion of the solution A−1b.

297
The proof of correctness is as for ErrorBound in Part I of this note because only298

the approximation was changed from x̃ + ỹ to three parts x̃ + ỹ + z̃. Of course it299

is possible to split the approximation into an unevaluated sum of even more parts,300

where increasing the parameter k in prodK or spProdK would compute the residuals301

with sufficient accuracy. However, we refrained from doing this because we rarely302

encountered entries with not maximally accurate inclusion.303

3. Inertia of a 2 × 2 Hermitian matrix. For a decomposition A = LDLT of304

real A we need the inertia of the block diagonal matrix D. Thus we need the inertia305

of M ∶= ⎛⎝
a b

b c

⎞
⎠ for a, b, c ∈ F. For λ1, λ2 ∈ R denoting the eigenvalues of M , we have306

λ1 + λ2 = trace(M) = a + c and λ1λ2 = det(M) = ac − b2. The following is true for307

singular M , however, if successful then nonsingularity of D will be proved a posteriori308

by our verification algorithm.309

If det(M) < 0, then the inertia, the number of negative, zero and positive eigen-310

values, is ι(M) = (1,0,1). If det(M) > 0, then ι(M) = (0,0,2) if trace(M) > 0 and311

ι(M) = (2,0,0) otherwise.312

We suppose a floating-point computation in some nearest rounding barring over-313

and underflow. A nearest rounding is defined by a rounding function fl ∶ R → F. For314

a, b ∈ F and ○ ∈ {+,−,×, /} that means that the floating-point result fl(a ○ b) satisfies315

∣fl(a ○ b) − a ○ b∣ = min{∣f − a ○ b∣ ∶ f ∈ F} .316

Different nearest roundings are discriminated by the rounding of the tie: If the real317

This manuscript is for review purposes only.

10 S. M. RUMP

result a○b is not the midpoint between two adjacent floating-point numbers, then the318

nearest result is uniquely determined, otherwise it is one of the two neighbours.319

Any nearest rounding respects ordering, i.e.,320

(3.1) x, y ∈ R ∶ fl(x) < fl(y) ⇒ x < y and x < y⇒ fl(x) ⩽ fl(y) .321

Since zero is a floating-point number, it follows322

(3.2) a, c ∈ F ∶ fl(a + c) < 0 ⇔ a + c < 0 .323

Here ⇒ is clear, and for ⇐ note that fl(a + c) = 0 is only possible if a + c is below the324

smallest denormalized floating-point number. However, in that case fl(a + c) = a + c,325

cf. [24].326

It remains the problem to compute the sign of det(M) = ac− b2 in floating-point.327

Let p ∶= fl(ac) and q ∶= fl(b2). Then (3.1) implies328

(3.3) p − q < 0 ⇒ ac < b2 ⇔ det(M) < 0329

and similarly for p − q > 0. It remains the case p = q. Since p, q are computed in330

floating-point, still det(M) ≠ 0 is possible and the sign has to be decided. In that rare331

case we us the error-free transformation TwoProduct [14, 44, 24]. For a, b ∈ F the call332

[x,y] = TwoProduct(a,b) produces x, y ∈ F with x = fl(ab) and x + y = ab. Let333

[p,e] = TwoProduct(a,c) and [q,f] = TwoProduct(b,b) .334

Then335

p = q ⇒ det(M) = ac − bd = e − f336

and the sign of the determinant can be determined as for the trace.337

The Algorithm NumPosEV in Table 5 is executable Matlab/INTLAB code and338

computes the number of positive eigenvalues of a symmetric matrix M ∶= [a b;b c].339

The first line sets the rounding mode to nearest [39]. From what we derived before340

the correctness is clear for det(M) ≠ 0. If det(M) = 0 the eigenvalues are λ1 = 0 and341

λ2. Thus trace(M) = a + c = λ2 and proves correctness of the algorithm.342

4. Symmetric matrices. We show in Table 6 a general outline of our modified343

subalgorithm “verifySparseSym0” to compute verified bounds for the solution of a344

sparse linear system with symmetric matrix.345

Our second method explores on Theorem 1.1 published in [38, Theorem 1.1]; the346

difference to the method on Part I of this note will be explained at the end of this347

section. The original method in [38, Theorem 1.1] relied on approximate LDLT -348

decompositions of A+ sI and A− sI for a shift s being an anticipated lower bound of349

σmin(A). In the original paper we used LDLT , here we use the decompositions L1L2350

presented in Part I of this note, were L2 = SLT1 for a signature matrix S. There are two351

advantages. First, the inertia of S is trivial to compute. Second and more important,352

the entries of the residual As−L1L2 for As = A±sI compute as one dot product where353

As −LDLT requires the computation of the product of three matrices. Hence, in the354

former case we can expect better bounds for the spectral norm of the residuals. Only355

if the residual As −L1L2 is not small enough for a verification we turn to As −LDLT356

as in the original paper. In that case we use Algorithm residualBoundLDLT as in357

Table 3.358

Lines 2 − 4 are as in subalgorithm VerifySparseSym in Part I of this note. In359

Line 5 the approximate decomposition of A is used to compute s, an anticipated lower360

bound on the smallest singular value of A.361

This manuscript is for review purposes only.

VERIFIED ERROR BOUNDS FOR SPARSE SYSTEMS PART II 11

function p = NumPosEV(a,b,c)

setround(0)

d = a*c - b*b;

if d==0 % determine sign of determinant

[p,e] = TwoProduct(a,c); % p+e = ac

[q,f] = TwoProduct(b,b); % q+f = b^2

d = e - f; % using p=q

end

if d<0 % one positive, one negative eigenvalue

p = 1;

elseif d > 0 % eigenvalues have same sign

if a > -c % two positive eigenvalues

p = 2;

else % two negative eigenvalues

p = 0;

end

else % matrix singular

p = sign(a+c);

end

end % function NumPosEV

Table 5
Computing the number p of positive eigenvalues of M ∶= [a b;b c].

In order to distinguish the factors, we denote As in Lines 6 and 14 by As− and362

As+, respectively. The matrix As− in Line 6 is computed in rounding downwards363

and therefore a lower bound on A − sI, i.e., As− = A − sI − ∆− for a diagonal and364

nonnegative matrix ∆−, and similarly for As+.365

Suppose matrices P−,Q−, P+,Q+ are given such that366

(4.1) ∥As− − P−Q−P
T
−
∥2 ⩽ α− and ∥As+ − P+Q+P

T
+
∥2 ⩽ α+.367

Denote the eigenvalues of symmetric M ∈ Fn×n by λ1(M) ⩾ . . . ⩾ λn(M) and let k be368

the index of the smallest positive eigenvalue of Q−. Then (1.5) implies369

λk(A) = λk(A − sI) + s ⩾ λk(As−) + s ⩾ λk(P−Q−P
T
−
) + s − α− > s − α− .370

Denote by ` the index of the smallest positive eigenvalue of Q+ such that λ`+1(Q+) ⩽ 0.371

Then we conclude similarly372

λ`+1(A) = λ`+1(A + sI) − s ⩽ λ`+1(As+) − s ⩽ λ`+1(P+Q+P
T
+
) − s + α+ ⩽ −s + α+ .373

The smallest singular value of A is equal to the smallest absolute value of an eigenvalue374

λν(A). If the inertia of Q− and Q+ coincide, then k = ` and the ordering of the λν(A)375

implies376

(4.2) σmin(A) = min (−λk+1(A), λk(A)) ⩾ s −max(α−, α+) .377

Now in Step 7−8 an approximate decomposition As− ≈ L1SL
T
1 is computed. Note that378

the computation of L2 = SLT1 does not cause rounding errors because S is a signature379

matrix, i.e., diagonal with entries ±1 on the diagonal. Hence L1L2 = L1SL
T
1 . Then380

This manuscript is for review purposes only.

12 S. M. RUMP

1 function [x, δ] = verifySparseSym0(A,b)

2 Equilibrate A by (1.6)

3 Compute LDLT (A) by (1.8)

4 If D is singular, verification failed, [x, δ] = verifySparseGen0(A,b), return

5 Compute s̃(A,L,D) by (1.12) and set s ∶= 0.9s̃, Φ = true
6 Rounding downwards, As ∶= A − sI and compute LsDsL

T
s (As) by (1.8)

7 Compute approximate splitting Ds ≈ D̂sSD̂s
T

according to (1.10)

8 Compute L1 ≈ LDs and L2 = SLT1
9 Use (1.11) to compute α− with ∥As −L1L2∥2 ⩽ α−

10 If α− ⩾ s, improve α− by (2.5)

11 If α− < s, ν− = sum(S) > 0, goto Step 13

12 Compute α− with ∥As −LsDsL
T
s ∥2 ⩽ α− as in Table 3, ν− = π(Ds)

13 If α− ⩾ s, first verification failed, go to Step 22

14 Rounding upwards, As ∶= A + sI and compute LsDsL
T
s (As) by (1.8)

15 Compute approximate splitting Ds ≈ D̂sSD̂s
T

according to (1.10)

16 Compute L1 ≈ LDs and L2 = SLT1
17 Use (1.11) to compute α+ with ∥As −L1L2∥2 ⩽ α+
18 If α+ ⩾ s, improve α+ by (2.5)

19 If α+ < s, ν+ = sum(S) > 0, goto Step 21

20 Compute α+ with ∥As −LsDsL
T
s ∥2 ⩽ α+ as in Table 3, ν+ = π(Ds)

21 Set α = max(α−, α+), if α < s, go to Step 23

22 If Φ, Φ = false, s = s/5, goto Step 6, else ν− = 0

23 If ν− ≠ ν+,verification failed, [x, δ] = verifySparseGen0(A,b), return

24 [x, δ] = ErrorBound(B, [0; b], s − α,“solve“) using LDLT for solve

Table 6
Verified error bounds for A−1b for general sparse input matrix A.

α− is computed and possibly improved in Step 10 such that ∥As− − L1SL
T
1 ∥ ⩽ α−.381

If α− < s in Step 11, we set P− ∶= L1 and Q− ∶= S. Then the number k of positive382

eigenvalues of Q− is equal to ν− and λk(A) > s − α−. If α− ⩾ s in Step 11, we set383

P− ∶= Ls and Q− ∶= Ds and compute the upper bound α1 for ∥As − LsDsL
T
s ∥2 using384

Algorithm residualBoundLDLT in Table 3. The number k of positive eigenvalues of385

Q− is equal to ν− which is computed by π(D) based on Algorithm NumPosEV in Table386

5. Hence λk(A) > s − α− as well.387

If α− ⩾ s, the verification is not yet successful for the choice of s. In that case we388

go to Step 22 to try once more with decreased s.389

The computations in Lines 14 − 20 are similar to those in Lines 6 − 12 replacing390

the subindex “-” by “+”. It follows that the number ` of positive eigenvalues of Q+391

is equal to ν+ and that λ`+1(A) ⩽ −s + α+. If α ∶= max(α−, α+) < s in Step 21 and392

ν− = ν+ in Step 23, then k = ` and (4.2) implies σmin(A) ⩾ s − α > 0.393

If α ∶= max(α−, α+) ⩾ s in Step 21, then as before a reason may be that s is too394

This manuscript is for review purposes only.

VERIFIED ERROR BOUNDS FOR SPARSE SYSTEMS PART II 13

large. In that case we reduce s and try the verification from Lines 6 − 21 again. If395

still α ⩾ s or ν− ≠ ν+ in Step 23, then verification failed and we turn to subalgorithm396

“verifySparseGen0”.397

If the verification was successful, the positive lower bound s − α on σmin(A)398

verifies that the matrix A is nonsingular, and entrywise bounds for the solution of399

the linear system are computed by Algorithm ErrorBound in Table 1 of Part I of this400

note. To compute almost always maximally accurate inclusions we may use Algorithm401

ErrorBound3 as in Table 4.402

The difference to Algorithm “verifySparseSym” in Part I of this note is as follows.403

Here the input matrix is shifted by s to the left and right. If the inertia of the corre-404

sponding LDLT -decompositions are the same, then s−α is a lower bound for σmin(A)405

subject to the maximum α of the residual bounds. The drawback is some additional406

fill-in of the factors L of the shifted matrices. As a consequence “verifySparseSym0”407

is slower but seems a little more stable.408

In “verifySparseSym” in Part I of this note we decompose A ≈ L1L2 and estimate409

the smallest singular value of L1 using a Cholesky decomposition of L1L
T
1 subject to410

a norm bound of the residual A−L1L2. That turns out to be faster, but in rare cases411

it is less stable. See the numerical results in Section 9.412

5. General matrices. As in [38, 40] our method for linear systems with general413

matrix uses the augmented matrix414

(5.1) B ∶=
⎛
⎝

0 AT

A 0

⎞
⎠

415

the singular values of which are ± the eigenvalues of A. This matrix is used in [46] as416

well.417

As in the symmetric case we explore on Theorem 1.1 published in [38, Theorem418

1.1]. The original method relied on approximate LDLT -decompositions of A ± sI for419

a shift s being an anticipated lower bound of σmin(A). In contrast to the symmetric420

case, one shift suffices for the augmented matrix B because the inertia of B is known421

beforehand. That is at least true for nonsingular matrix A. We do not assume422

nonsingularity of A beforehand but prove it a posteriori so that all deductions are423

true.424

Rather than LDLT as in [38, Theorem 1.1] we use, as in the symmetric case, a425

decomposition L1L2 of B − sI as presented in Part I of this note, were L2 = SLT1 for426

a signature matrix S. That implies the same advantages as in the symmetric case.427

In contrast to [38, 40, 46] we proceed for general matrices as follows. After equili-428

brating the original matrix A we compute an LDLT -decomposition of the augmented429

matrix B by (1.8). As has been observed in Part I in some cases the computed D430

is singular, even for moderately conditioned input matrix. That should not happen,431

and we cure it as in (1.7).432

Based on the factors L,D we compute in Step 7 an anticipated lower bound s for433

the smallest singular value of B which is equal to that of A. Although B has double434

the size of A, the iteration (1.12) to compute s as a lower bound of σmin(B) rather435

than of σmin(A) is more stable due to the symmetry of B.436

A splitting (1.10) of D is computed in Step 9, and in Step 10 the factors L1, L2437

such that L1L2 ≈ A. The factor L2 is L1 multiplied by some signature matrix. That438

computation is error-free, so that as in subalgorithm “verifySparseSym” in Part I of439

this note the factors L1, L2 have identical sets of singular values.440

This manuscript is for review purposes only.

14 S. M. RUMP

1 function [x, δ] = verifySparseGen0(A,b)

2 Equilibrate A by (1.7)

3 Let B the augmented matrix (5.1)

4 Compute LDLT (B) by (1.8)

5 If nnz(D) < 2n, compute LDLT (B) by (1.9)

6 If nnz(D) < 2n,verification failed, return

7 Compute s̃(B,L,D) ≲ σmin(B) by (1.12) and set s ∶= 0.9s̃, Φ = true
8 Rounding downwards, Bs ∶= B − sI and compute LsDsL

T
s (Bs) by (1.8)

9 Compute approximate splitting Ds ≈ D̂sSD̂s
T

according to (1.10)

10 Compute L1 ≈ LDs and L2 = SLT1
11 Use (1.11) to compute α with ∥Bs −L1L2∥2 ⩽ α
12 If α < s, improve α by (2.5)

13 If α < s, ν = sum(Ds) > 0, else improve α by (2.6), ν = π(Ds)
14 If α < s, go to Step 16

15 If Φ, Φ = false, s = s/5, goto Step 8, else ν = 0

16 If ν ≠ n,verification failed, return

17 [x, δ] = ErrorBound(B, [0; b], s − α,“solve“) using LDLT for solve

Table 7
Verified error bounds for A−1b for general sparse input matrix A.

The remaining of the subalgorithm VerifySparseGen0 is identical to subalgo-441

rithm VerifySparseGen in Table 5 of Part I of this note. Hence, if successful, s − α442

is a lower bound for σmin(B) = σmin(A).443

Error bounds for the solution of the original linear system Ax = b use that444

(5.2)
⎛
⎝

0 AT

A 0

⎞
⎠
⎛
⎝
x

y

⎞
⎠
=
⎛
⎝

0

b

⎞
⎠

445

implies x = A−1b and we proceed as in Part I of this note.446

As for “verifySparseSym0” the difference is that “verifySparseGen0” shifts the447

augmented matrix and computes a lower bound for σmin(B) using Sylvester’s law448

of inertia. In contrast, “verifySparseGen” relies on the factorization L1L2 of the449

original augmented matrix B without shift and computes a lower bound for σmin(B)450

based on a Cholesky factorization of L1L
T
1 . In rare cases that does not allow a451

verification where “verifySparseGen0” does. In general, however, “verifySparseGen0”452

seems slower because the decomposition of the shifted causes additional fill-in, see the453

computational results in Section 9.454

6. Least squares problems and underdetermined linear systems. The455

methods in Part I and Part II of this note can be used to compute verified error456

bounds for the solution of least squares problems and underdetermined systems of457

linear equations with sparse matrix.458

This manuscript is for review purposes only.

VERIFIED ERROR BOUNDS FOR SPARSE SYSTEMS PART II 15

For A ∈ Cm×n with m > n and b ∈ Cm define (cf. [11, Chapter 20])3459

(6.1)
⎛
⎝

0 AH

A −Im
⎞
⎠
⎛
⎝
x

y

⎞
⎠
=
⎛
⎝

0

b

⎞
⎠
⇒ AHy = 0 and Ax − y = b ,460

where Im denotes the m×m identity matrix. Multiplying the second equation by AH461

yields AHAx = AHb. For full-rank A and A+ denoting the classical Moore-Penrose462

inverse [11] it follows that x = (AHA)−1AHb = A+b is the unique least squares solution463

minimizing ∥Ax − b∥2.464

The system matrix in (6.1) is symmetric indefinite, so our subalgorithms “verifyS-465

parseSym” and “verifySparseSym0” are applicable. In [42] we published algorithms to466

compute verified error bounds for least squares problems and underdetermined linear467

systems with full matrix. In that paper we used468

⎛
⎝
A −I
0 AH

⎞
⎠
⎛
⎝
x

y

⎞
⎠
=
⎛
⎝
b

0

⎞
⎠
.469

Although the system matrix is not Hermitian, we showed numerical evidence in [42]470

that the computed inclusions are sometimes more accurate than using (6.1). However,471

for our present approach we have to stick to the Hermitian input matrix.472

For an underdetermined system of linear equations Ax = b with A ∈ Cm×n, b ∈ Cm473

and m < n define474

(6.2)
⎛
⎝
−In AH

A 0

⎞
⎠
⎛
⎝
x

y

⎞
⎠
=
⎛
⎝

0

b

⎞
⎠
⇒ Ax = b and AHy = x ,475

so that multiplying the second equation by A yields AAHy = Ax = b. If A has full476

rank, then x = AHy = AH(AAH)−1b = A+b is the unique solution of Ax = b with477

minimal ∥x∥2.478

The linear systems in (6.1) and (6.2) can be solved by “verifySparseSym” or479

“verifySparseSym0”. However, in Algorithm verifySparselss0 in Table 10 we call480

recursively “verifySparselss0”. Since the augmented matrix is square, that leads di-481

rectly to the case distinctions for real or complex matrices.482

In subalgorithms “verifySparseSym” or “verifySparseSym0” the symmetric equi-483

libration (1.7) (which is (3.3) in Part I of this note) is applied, i.e., two steps of the484

Sinkhorn-Knopp algorithm. That means the rows of AT and rows of A are equili-485

brated from the left, and similarly from the right. Thus, although B is symmetric,486

the matrix A is equilibrated independently from the left and right. That produces487

stable results.488

When computing error bounds for the square linear systems (6.1) or (6.2) by489

our algorithms, the nonsingularity of the augmented matrix is verified. In turn, that490

implies that A has full rank and our conclusions are valid.491

There are other possibilities to define the solution of an underdetermined linear492

system. For example, Matlab computes a solution of Ax = b with at most m nonzero493

entries. This can be done as follows. First, an LU -decomposition of AH is computed494

with partial pivoting. The only purpose is to obtain the pivoting information. Say495

3We may use +Im or −Im in the lower right corner of the system matrix; in order to cover
complex matrices and keep the algorithm to be presented in Section 8 simple, we use −Im because
“verifySparseSPD” recognizes immediately that the system matrix cannot be positive definite.

This manuscript is for review purposes only.

16 S. M. RUMP

that is stored in a vector p. Then the x is the solution of Ãx = b where Ã consists of496

the columns p1, . . . , pm of A.497

As a consequence we cannot compare our results with that of Matlab’s backslash498

operator.499

7. Systems of nonlinear equations. In this section we need some more details500

on interval operations, in particular the use of INTLAB [39]. If an operation involves501

one operand of type intval, then the operation is executed using interval arithmetic,502

i.e., the result is an inclusion of the true real (or complex) result. That is true for all503

kinds of operations including vectors, matrices, standard functions and so forth. For504

example, in a*(b+c) interval addition and multiplication is used if b or c is of type505

intval. There are toolboxes for gradients, Hessian, taylor series and Taylor models506

in INTLAB. Here we use the gradient toolbox to compute an approximation of the507

derivative of a function. If the argument is of type intval, then a mathematically508

rigorous inclusion is computed. For details, see [39, 41].509

Let a nonlinear system f(x) = 0 with continuously differentiable function f ∶ D→510

Rn with compact and convex D ∈ IRn be given. We assume a Matlab program f to511

be given such that f(x) evaluates f(x).512

Let x̃ ∈ D be given. Denote the Jacobian of f at x by Jf(x). Then by the n-513

dimensional Mean Value Theorem for x ∈ D there exist ξ1, . . . , ξn ∈ x∪x̃, the convex514

union of x and x̃, with515

(7.1) f(x) = f(x̃) +
⎛
⎜⎜⎜
⎝

∇f1(ξ1)

⋯

∇fn(ξn)

⎞
⎟⎟⎟
⎠

(x − x̃)516

using the component functions fi ∶ Di → R where Di ∶= {xi ∶ x ∈ D} ∈ IR. As is517

well-known, the ξi cannot, in general, be replaced by a single ξ, so that the matrix in518

(7.1) is only rowwise equal to some Jacobian Jf of f .519

Using INTLAB’s gradient toolbox, the call J = f(gradientinit(x)) computes520

for x ∈ Fn ∩ D some J ∈ Fn×n with J ≈ Jf(x). More important, let X ∈ IFn be an521

interval vector with X ⊆ D. Then the call522

(7.2) Y = f(gradientinit(X))523

computes Y such that Y.x ∈ IFn is an interval vector with {f(x) ∶ x ∈ X} ⊆ Y.x, and524

Y.dx is an interval matrix Y.dx ∈ IFn×n with {∇fk(ξ) ∶ ξ ∈ X} ⊆ Yk for all k ∈ {1, . . . , n}.525

For a subset X of Rn define hull(X) ∈ IRn by526

(7.3) hull(X) ∶= ⋂{Z ∈ IRn ∶ X ⊆ Z} .527

For x, x̃ ∈ D also X ∶= hull(x∪x̃) ⊆ D, and (7.2) implies528

(7.4)

⎛
⎜⎜⎜
⎝

∇f1(ξ1)

⋯

∇fn(ξn)

⎞
⎟⎟⎟
⎠
∈ Y.dx529

for all ξ1, . . . , ξn ∈ X. Therefore [41, Theroem 13.1], using interval operations the530

Mean Value Theorem can be written in the following elegant way.531

This manuscript is for review purposes only.

VERIFIED ERROR BOUNDS FOR SPARSE SYSTEMS PART II 17

Theorem 7.1. Let continuously differentiable f ∶ D → Rn with D ∈ IRn and532

x,xs ∈ D ∩ Fn be given. Define Y = f(gradientinit(hull(x,xs))). Then533

(7.5) f(x) ∈ f(x̃) + Y.dx(x − x̃) .534

Using this we can formulate [41, Theorem 13.3] the following theorem to compute535

error bounds for a solution of a system of nonlinear equations f ∶ Rn → Rn based on536

some approximate solution x̃ ∈ Rn.537

Theorem 7.2. Let continuously differentiable f ∶ D → Rn and x̃ ∈ Rn, X ∈ IRn,538

R ∈ Rn×n with 0 ∈ X and x̃ +X ⊆D be given. Suppose539

(7.6) S(X, x̃) ∶= −Rf(x̃) + {I −RJf(x̃ +X)}X ⊆ int(X)540

with int denoting the topological interior. Then R and all matrices M ∈ Jf(x̃ + X)541

are nonsingular, and there is a unique root x̂ of f in x̃ + S(X, x̃).542

The bound x̃ + S(X, x̃) is computable and is mathematically rigorous including the543

proof of uniqueness of the root x̂ of f in x̃ + S(X, x̃).544

A practical application as implemented in Algorithm verifynlss in INTLAB545

uses an approximate inverse R of Jf(x̃) which is, in general, a full matrix. Therefore,546

an inclusion based on Theorem 7.2 is hardly applicable to large systems of nonlinear547

equations even if the Jacobian is sparse.548

In practice, however, often individual variables xk have few dependencies on other549

variables. As a consequence, the Jacobian becomes sparse, often a banded matrix.550

Next we show how the assumption (7.6) of Theorem 7.2 can be verified by solving a551

linear system with point matrix and interval right hand side. Then our methods for552

the solution of sparse linear systems are applicable.553

We follow [41, Section 13, page 87] and compute an inclusion J ∈ IFn×n of Jf(x̃+X)554

as in (7.2). Hence (7.4) implies that for all ξ ∈ x̃ + X and for all k ∈ {1, . . . , n} the555

gradient ∇fk(ξ) is included in the k-th row of J, and Theorem 7.1 is applicable.556

Denote Č = mid(J) and ∆ ∶= rad(J). Assume that Č is nonsingular and suppose557

(7.7) {y ∶ Čy = −f(x̃) − %x, −∆ ⩽ % ⩽ ∆, x ∈ X} ⊆ Y .558

for Y ∈ IFn. Then Y ⊂ int(X) implies (7.6). To see this set R ∶= Č−1 and observe559

−Č−1f(x̃) + {I − Č−1[Č + %]}x = Č−1(− f(x̃) − %x)560

for x ∈ Rn and % ∈ Rn×n. Applying this to x ∈ X and using ∣%∣ ⩽ ∆ proves (7.6)561

for R ∶= Č−1. Hence there is a unique solution x̂ of f(x) = 0 with x̂ ∈ x̃ + Y. That562

transforms the problem of computing verified bounds for the solution of a nonlinear563

system to the solution of a linear system with interval right hand side. Note that564

(7.6) proves the nonsingularity of Č as well.565

Now X is an anticipated inclusion of the difference of the true solution x̂ of566

the nonlinear system f(x) = 0 to the approximate solution x̃. And if successful, i.e.567

Y ⊂ int(X), then x̂−x̃ ∈ Y. If x̃ is a good approximation, then X is small in magnitude568

and essentially symmetric to the origin. As a consequence we further simplify (7.7) by569

using the magnitudes4 X and Y of X and Y, and set X ∶= [−X,X] and Y ∶= [−Y ,Y].570

Then Y <X with entrywise comparison is equivalent to Y ⊂ int(X).571

4Recall that for an interval quantity Z the magnitude 0 ⩽ mag(X) ∈ Rn is the entrywise maximum
absolute value, i.e., ∣z∣ ⩽ mag(Z) for all z ∈ Z. That includes interval vectors and matrices with
entrywise absolute value and comparison.

This manuscript is for review purposes only.

18 S. M. RUMP

Let a matrix A ∈ Fn×n and interval right hand side b ∈ IFn be given. We are572

interested in computing an inclusion of the “outer inclusion set”, see (5.1) in Part I573

of this note:574

(7.8) Σ(A,b) ∶= {x ∈ Rn ∶ ∃b ∈ b with Ax = b} .575

To that end we use Algorithm “verifySparselss” as in Table 6 in Part I of this note576

with small modifications. First, we remove the check for least squares and under-577

determined problems. Furthermore, the only modification is replacing the calls of578

“ErrorBound” in last line in subalgorithms “verifySparseSPD”, “verifySparseSym”579

and “verifySparseGen” by the call of “ErrorBoundI” as shown in Table 8.580

1 function [xs,delta] = ErrorBoundI(A,b,s,@solve)

2 mu = b.mid; r = b.rad;

3 xs = solve(A,mu);

4 xs = xs - solve(A,spProdK(A,xs,-1,mu,2));

5 [rho,err] = spProdK(A,xs,-1,mu,2);

6 setround(1)

7 delta = (abs(rho) + err + r)/s;

8 end % function ErrorBoundI

Table 8
Executable Matlab/INTLAB code to compute verified error bounds for the solution of a real or

complex system of linear equations with interval right hand side.

The input parameter s is a lower bound on σmin(A) and @solve is some routine581

delivering an approximate solution of a linear system. As in the original algorithm582

“ErrorBound” @solve is based on the already computed decomposition in each of the583

subalgorithms.584

The proof of correctness of Algorithm “ErrorBoundI” is as follows. Let b ∈ IFn585

be an interval vector. Then µ, r ∈ Fn in Line 2 are computed such that µ−r ⩽ b ⩽ µ+r586

for all b ∈ b. In Line 3 an approximate solution x̃ of the midpoint equation Ax = µ587

is computed and is improved in Line 4 by one residual iteration. According to [45]588

that implies backward stability of x̃. Line 5 computes an inclusion rho ± err of the589

residual ∣Ax̃−µ∣, such that in particular ∣Ax̃−µ∣ ⩽ ∣rho∣+err. Now delta in Line 7 is590

computed in rounding upwards, and with the lower bound s on σmin(A) it follows591

(7.9)

∣A−1b − x̃∣ ⩽ ∣A−1∣ ∣b −Ax̃∣
⩽ ∣A−1∣ (∣µ −Ax̃∣ + r)
⩽ ∥A−1∥∞ (∣µ −Ax̃∣ + r)
⩽ ∥A−1∥2 (∣rho∣ + err + r)
⩽ δ

592

for all b ∈ b. Let J ∈ IFn×n be an inclusion of Jf(x̃ + X) computed as in (7.2) and593

consider594

(7.10)

y = −f(intval(xs));
setround(1)
b = midrad(y.mid , y.rad + J.rad ∗ mag(X));

595

The first line computes an inclusion y ∈ IFn of −f(x̃) with −f(x̃) ∈ y.mid±y.rad. The596

second statement switches the rounding to upwards, and finally b is an inclusion of597

This manuscript is for review purposes only.

VERIFIED ERROR BOUNDS FOR SPARSE SYSTEMS PART II 19

1 function [X,kxs,kY] = verifySparseNlss(f,xs)

2 setround(0)

3 n = size(xs,1); phi = 1e-14*sqrt(n);

4 dxs = abs(xs); kxs = 0;

5 while (kxs < 15) % at most 10 Newton iterations

6 kxs = kxs + 1; xsold = xs;

7 y = f(gradientinit(xs)); % function value and gradient

8 xs = xs - y.dx\y.x; % approximate Newton iteration

9 d = abs(xs-xsold);

10 if all(d<.5*abs(xs)) && (norm(d,inf)<=phi*norm(xs,inf))

11 break

12 end

13 end

14 ys = -f(intval(xs)); % inclusion of f(xs)

15 Y = mag(ys); % magnitude of ys

16 kY = 0; setround(1)

17 while (kY < 10)

18 kY = kY + 1;

19 X = 1.01*Y + realmin; % epsilon-inflation

20 JJ = f(gradientinit(midrad(xs,X)));

21 J = JJ.dx; % inclusion of Jacobian

22 b = midrad(ys.mid , ys.rad + J.rad*X);

23 [Ys,delta] = verifySparse(J.mid,b);

24 Y = abs(Ys) + delta; % r.h.s. of (7.7)

25 if all(Y < X)

26 X = midrad(xs,Y); % inclusion successful

27 return

28 end

29 X = intval(NaN(size(xs))); % inclusion failed

30 end % function verifySparseNlss

Table 9
Executable Matlab/INTLAB code to compute verified error bounds for the solution of a real or

complex system of nonlinear equations.

y.mid±% for all ∣%∣ ⩽ y.rad + J.rad*mag(X). Thus −f(x̃) − %x ∈ b for all x ∈ X and598

∣%∣ ⩽ ∆. It follows that an inclusion Y of the linear system with matrix Č and right599

hand side b satisfies (7.7). As a consequence, Y ⊆ int(X) implies x̂ ∈ x̃ +Y.600

The algorithm to solve a system of nonlinear equations works as follows. First601

we apply some Newton iterations to produce a good approximation x̃ of f(x) = 0.602

Then f(x̃) should be small and the magnitude of b is dominated by the radius ∆ of603

the inclusion of Jf(x̃ +X). The residual of the linear system cannot become smaller604

than the magnitude of b, which in turn increases with the sensitivity of the problem.605

Therefore, there is no need to improve an approximate solution of Čy = b by a residual606

iteration and we may apply algorithms “verifySparselss” or “verifySparselss0” with607

using Algorithm “ErrorBoundI” as in Table 8 rather than “ErrorBound”.608

Executable Matlab/INTLAB code of Algorithm verifySparseNlss to compute609

rigorous error bounds for the solution of a nonlinear system f(x) = 0 based on an610

approximate solution x̃ is given in Table 9. The rationale is as follows. In Line 2 the611

This manuscript is for review purposes only.

20 S. M. RUMP

rounding is set to nearest, and in Lines 5 − 13 some Newton iterations are applied to612

improve the approximation x̃. The statement y = f(gradientinit(xs)) in Line 7613

computes y such that y.x ≈ f(x̃) and y.dx is an approximation of the Jacobi matrix614

of f at x̃ using the gradient toolbox, which in turn is based on forward automatic615

differentiation [4, 10] and implemented in INTLAB [39]. Therefore Line 8 is one616

(approximate) Newton step.617

The quantity ys in Line 14 is an inclusion of −f(x̃) and Y its magnitude. Lines618

17 − 28 are an interval iteration adapted to the description in [41]. Recall that Y is619

a positive real vector, and the anticipated inclusion of the error with respect to x̃620

is the interval vector [−Y,+Y]. Line 19 is one step of the so-called epsilon inflation621

introduced in [36]. The target is Y <X, or equivalently [−Y,+Y] ⊆ int[−X,+X]. The622

inclusion may fail if [−X,+X] is too narrow, so [−X,+X] is intentionally widened.623

The success of the epsilon-inflation can be analyzed theoretically, see [41]. On the624

other hand [−X,+X] should not be too wide because that widens the Jacobian and625

may prevent Y <X.626

The purpose of the epsilon-inflation is to identify a good candidate for inclusion.627

The right hand side b should be a narrow interval around f(x̃). More precisely,628

according to (7.9) around −f(x̃), but that doesn’t matter because our inclusion is629

symmetric to the origin. Therefore, basically ±1.01∣f(x̃)∣ is our first choice. We need630

an inclusion J ∈ IFn×n of Jf(Z) with Z ∶= x̃+X. The quantity5 JJ in Line 20 satisfies631

f(z) ∈ JJ.x and the Jacobian of f at z is in JJ.dx for all z ∈ Z. Hence J in Line632

21 is what we need. The next Line 22 computes b as in (7.10), and the next line an633

inclusion Y s ± δ of the linear system with matrix Č = mid(J) and right hand side b.634

The magnitude of the inclusion is Y as in Line 24, and if Y < X is true for all entries635

then midrad(xs,Y) is an inclusion of the solution of the nonlinear system.636

If Yk ⩾Xk for some k, then the inclusion is tried again with X replaced by a little637

widened Y . In some way these are also Newton steps. In each step a new Jacobian638

J at Z is computed, and the widened Y reflects the width of the previous J. If not639

successful after some 10 trials, the verification failed.640

Unlike for linear systems we cannot expect, in general, maximally accurate inclu-641

sions because the lack of an accurate residual iteration and, more important, because642

of nonlinearities of f widening the Jacobi matrix. Nevertheless the method works well643

in a number of examples, see the test results in Section 9.644

8. Complex sparse linear systems, data with tolerances and the final645

sparse lss algorithms. As noted in Part I, the LDLT -decomposition for sparse646

matrices is restricted to real data. Therefore we proceed for complex linear systems647

as in Section 10 in Part I of this note. Data with tolerances may be treated as in648

Section 5 of Part I of this note.649

To distinguish our algorithms, we use verifySparselss for our algorithm pre-650

sented in Part I (also called “new” in there) and use verifySparselss0 for the algo-651

rithm presented in this Part II (henceforth called “new0”). The latter is identical to652

the former except replacing subalgorithms “verifySparseSym” and “verifySparseGen”653

by “verifySparseSym0” and “verifySparseGen0”, respectively. Executable code of Al-654

gorithm verifySparselss0 including least squares problems and underdetermined655

linear systems is presented in Table 10.656

The algorithm first checks for the type of problem, namely m > n for a least657

squares problem and m < n for an underdetermined system of equations. In either658

5In a practical implementation, of course, the same variable J can be used in Lines 20 and 21.

This manuscript is for review purposes only.

VERIFIED ERROR BOUNDS FOR SPARSE SYSTEMS PART II 21

function [xs,delta] = verifySparselss0(A,b,acc)

% Approximate solution xs of Ax=b with error bound delta

[m,n] = size(A);

if m>n % least squares problem

B = [sparse(n,n) A’ ; A -speye(m)];

[xs,delta] = verifySparselss0(B,[zeros(n,size(b,2));b],acc);

xs = xs(1:n,:);

delta = delta(1:n,:);

return

elseif m<n % underdetermined linear system

B = [-speye(n) A’ ; A sparse(m,m)];

[xs,delta] = verifySparselss0(B,[zeros(n,size(b,2));b],acc);

xs = xs(1:n,:);

delta = delta(1:n,:);

return

end

if isreal(A) % linear system with square matrix

if isreal(b) % A and b real

symm = isequal(A’,A);

if symm % A symmetric

[xs,delta] = verifySparseSPD(A,b);

end

if (~symm) || isnan(xs(1)) % A unsymm. or SPD failed

[xs,delta] = verifySparseGen0(A,b);

end

else % A real, b complex

[xs,delta] = verifySparselss0(A,[real(b) imag(b)]);

n = size(A,1);

m = size(b,2);

xs = complex(xs(:,1:m),xs(:,m+1:end));

delta = reshape(vecnorm(reshape(delta,[],2),2,2),n,[]);

end

else % A complex, square matrix

n = size(A,1);

A = [real(A) -imag(A);imag(A) real(A)];

b = [real(b);imag(b)];

[xs,delta] = verifySparselss0(A,b);

xs = complex(xs(1:n,:),xs(n+1:end,:));

delta = reshape(delta,n,[])’; % take care of multiple r.h.s.

delta = reshape(vecnorm(reshape(delta,2,[]),2),size(b,2),[])’;

end

end % function verifySparselss0

Table 10
Final algorithm to compute verified error bounds for the solution of a real or complex sparse

square linear system, for a least squares problem and an underdetermined linear system, all for
multiple right hand sides.

This manuscript is for review purposes only.

22 S. M. RUMP

case Algorithm verifySparselss0 is called using (6.1) or (6.2), respectively. If m = n,659

verified error bounds for a linear system with square matrix are computed with code660

identical to Algorithm verifySparselss in Table 6 in Part I of this note. The661

subalgorithm “verifySparseSPD” in Table 3 of Part I of this note is used except that662

in case of failure in lines 2,5 and 12 subalgorithm “verifySparseSym0” is called instead663

of “verifySparseSym”.664

The algorithm in Part I of this note is adapted to least squares problems and665

underdetermined linear systems similar to Algorithm verifySparselss0 by replac-666

ing subalgorithms “verifySparseSym0” and “verifySparseGen0” by “verifySparseSym”667

and “verifySparseGen”, respectively.668

We added6 to both algorithms an extra input parameter acc. If true, then inclu-669

sions with improved accuracy as described in Section 2 are computed by storing an670

approximation by an unevaluated sum of three instead of two parts. In that case we671

use Algorithm ErrorBound3 as in Table 4.672

Computational results comparing our two algorithms to each other and to Mat-673

lab’s backslash operator are presented in the next section. As has been mentioned,674

we restrict computational tests to least squares problems because Matlab does not675

compute an approximation of A+b for underdetermined linear systems.676

9. Test results. As in Part I of this note, our computing environment is a Pana-677

sonic laptop CF-SV with Intel(R) Core(TM) i7-10810U CPU with 1.10/1.61 GHz and678

16 GB RAM. We use Matlab version 2023b [21] under Windows 10. Henceforth we call679

Algorithm verifySparselss “new” as in Part I, and Algorithm verifySparselss0680

“new0”.681

We use the same set of test matrices from the Suite Sparse Matrix Collection682

[5] with the interface [15] as in Part I, namely we treat all real and complex square683

matrices with dimension684

(9.1) 103 ⩽ n ⩽ 105 and 1010 ⩽ condest(A) ⩽ 1016 and nnz(A) ⩽ 106 .685

Test matrices with symmetric positive definite input matrix are omitted because the686

corresponding subalgorithms in verifySparselss and verifySparselss0 coincide.687

That resulted in totally 284 tests displayed in Table 11. The first column indicates688

the structure indicated by [5], namely symmetric indefinite, general real, all test689

matrices out of [46], complex Hermitian positive definite and general complex. Our690

first Algorithm verifySparselss in Part I of this note computed verified bounds in691

301 out of the 306 test cases, whereas Algorithm verifySparselss0 presented here692

failed in only one test case, namely number 1247 in [5]. For that case Algorithm693

verifySparselss failed as well. We discuss that case later.694

The dimension, number of nonzero elements and condition number of all 284 test695

cases is shown in Figure 2. The dimensions vary between 1019 and 682,862 and696

the number of nonzero elements between 3562 and 5,778,545. For given matrix of697

dimension n we generate a right hand side A*(2*rand(n,1)-1)) as in Part I of this698

note. Hence the solution has, up to rounding errors, uniformly distributed entries699

between −1 and 1.700

In Figure 3 we show for all tests the ratio of computing times of Algorithm701

verifySparselss0 (henceforth also called “new0”) divided by that of Algorithm702

verifySparselss (henceforth also called “new”). The ratios are displayed if “new”703

(and therefore also “new0”) is successful. That explains the gap at case 30. A number704

6Since it is clear how to do that and in order to keep the codes simple, that is not shown in Table
6 for subalgorithm “verifySparseSym0” and Table 7 for subalgorithm ‘verifySparseGen0”.

This manuscript is for review purposes only.

VERIFIED ERROR BOUNDS FOR SPARSE SYSTEMS PART II 23

Table 11
Test sets and success rate.

success success

structure verifySparselss verifySparselss0

sym 45 out of 48 47 out of 48

gen 210 out of 211 211 out of 211

[46] 20 out of 20 20 out of 20

complex spd 1 out of 1 1 out of 1

complex gen 3 out of 4 4 out of 4

Fig. 2. Dimension, number of nonzero elements and condition number of all test matrices.

less than 1 means that “new0” is faster than “new”. That is rarely the case. In the705

median over all examples Algorithm verifySparselss from Part I of this note is706

faster than verifySparselss0 by a factor 1.23, at most by a factor 5.3. Conversely,707

“new0” is faster than “new” by at most a factor 2.8.708

In some way Algorithm verifySparselss0 is simpler than verifySparselss, so709

we may ask why it is slower. Both algorithm start with computing some factor L1,710

both for symmetric as for general matrices. However, “new” computes for symmetric711

input matrix A a factor of A, but “new0” of A shifted by s. Similarly, “new” computes712

a factor of the augmented matrix B, but “new0” of B shifted by s for general input713

matrix A. That causes a significant fill-in for method “new0”. In Figure 4 we display714

the ratio of the number of nonzero entries of the factor L1 in verifySparselss0715

divided by that of verifySparselss. Hence a value greater than 1 means that “new0”716

has more fill-in than “new”.717

The median ratio of fill-in over all examples is 2.4, and maximally the factor718

L1 by “new0” has 8.7 times more elements than that of L1 by “new”. That is true719

although we reduced the number of elements as explained in (3.5)ff in Part I of this720

note by setting entries in L smaller than 10−30 in magnitude to zero in case the first721

This manuscript is for review purposes only.

24 S. M. RUMP

Fig. 3. Ratios of computing times tverifySparselss0/tverifySparselss.

Fig. 4. Ratio of number of nonzero entries of L1 in “new0” divided by that of “new”.

LDLT -decomposition failed due to singular D.722

Next we show in Figure 5 a rough image of the median relative error of the723

Algorithms verifySparselss and verifySparselss0. As can be seen in both cases724

usually almost maximally accurate approximations are computed. In the median the725

relative error of all entries of the inclusion computed by Algorithms verifySparselss726

and verifySparselss0 is 3.6 ⋅ 10−17, the maximum relative error is around 10−4.727

As discussed at the end of Section 2 we may reduce the maximal relative error of728

the inclusion further by an improved residual iteration, storing an approximate solu-729

tion by an unevaluated sum of three instead of two parts. In the practical implemen-730

tation we added an extra parameter acc and eventually use Algorithm ErrorBound3731

This manuscript is for review purposes only.

VERIFIED ERROR BOUNDS FOR SPARSE SYSTEMS PART II 25

Fig. 5. Median of relative errors of verifySparselss and verifySparselss0.

as in Table 4. If the maximum relative error of the inclusion is beyond some thresh-732

old, then we switch from two to three parts for the approximate solution. We used733

the threshold 10−15 for the maximal error of all entries of the inclusion. When using734

acc= true the relative errors are as shown in Figure 6. Now for most examples the735

inclusions for all entries of the solution are maximally accurate.736

Fig. 6. Median of relative errors with option acc = true.

The additional computing time is marginal for a vector right hand side because737

only some extra O(n2) operations are necessary. For multiple right hand sides that738

changes. As a result, for almost all test cases maximally accurate inclusions for all739

entries are computed.740

We discuss some details of our Algorithm verifySparselss0 on the several im-741

This manuscript is for review purposes only.

26 S. M. RUMP

provement steps in the subalgorithms “verifySparseSym0” and “verifySparseGen0”.742

As has been mentioned, our first priority is the successful computation of verified743

bounds, and to that end there are several measures in the subalgorithms to avoid744

failure. Secondly, we aim to compute highly accurate bounds. One might introduce745

options to change these priorities.746

We begin with subalgorithm “verifySparseSym0”. The security measure on singu-747

lar D in step 4 occurred occasionally while developing Algorithm verifySparselss0,748

in the sym tests with (9.1) it did not happen. The improvement of α in line 10 was749

used 10 times, the second improvement in line 11 was used in 4 out of the 48 tests.750

For one test case the value s was decreased in line 22. Failure in line 23 occurred in751

4 out of the 48 sym tests and Algorithm verifySparselss called subalgorithm “ver-752

ifySparseGen0”. It succeeded in all but one case. As in Part I the reason seems that753

subalgorithm “verifySparseGen0” performs an unsymmetric equilibration by (1.7).754

Secondly, some details on the performance of subalgorithm “verifySparseGen0”755

for the 211 “gen” test cases plus the 20 tests from [46]. The second call of LDLT756

in step 5 was necessary in 53 out of 231 cases due to singularity of the factor D.757

As explained in Part I of this note there seems room for improvement for the Matlab758

routine ldl for an augmented matrix of type (5.1). With the trick in (1.9) the LDLT -759

decomposition never produced a singular D.760

The improvement of α in step 12 of subalgorithm “verifySparseGen0” was called761

in 58 cases, and the second improvement in line 13 was never used in the 231 tests.762

The decrease of s in step 15 was necessary once.763

Algorithm verifySparselss0 failed once in all 306 test cases including the sym-764

metric positive definite matrices, namely matrix 1247 in [5]. The condition number765

of that matrix is 7.6 ⋅ 1015, but the estimate s in Step 5 of “verifySparseSym0” for766

the smallest singular was 4.5 ⋅ 10−19. This is far too small for a successful verifica-767

tion. In this example even artificially setting s to a value slightly below σmin(A)768

did not help, the residuals where too large for both Algorithm verifySparselss and769

verifySparselss0.770

We present some detailed data in Tables 13 - 14. To present all data is too much771

for this note, so we put the results for all 284 test cases at the url in (9.2).772

(9.2) https ∶ //www.tuhh.de/ti3/rump/sparselssAllResultsII.pdf773

Here NaN in the columns for the relative error indicate failure of verification, the774

sixth column displays the ratio % = tnew0/tnew. A ratio % > 1 indicates that Algorithm775

verifySparselss of Part I of this note is faster than verifySparselss0 presented776

here. Otherwise, the columns are self-explaining.777

In order to reduce space for the results to be displayed in this note, we considered778

the 20 tests in [46] together with the 264 examples in (9.1) satisfying all properties779

listed in Table 12. That fills 2 pages of computational results; all results can be found780

at the url in (9.2). The curios ratio 1.43 of computing time tnew0/tnew is tuned to fill781

2 pages of results. The horizontal lines separate symmetric, general, [46], Hermitian782

positive definite and general complex matrices.783

As in Part I of this note we give some additional test results for randomly gen-784

erated ill-conditioned sparse matrices using A = sprand(n,n,dens,1/cnd) with di-785

mension n = 104, density 0.001 and cnd=1e15. The resulting matrices have some786

100,000 nonzero elements each, and the median estimated condition number over the787

100 tests was 4.0 ⋅ 1015. The results of this test are reported in Table 15.788

The median condition number 4.0 ⋅1015 of our samples is boarder line in the sense789

that a verification algorithm might just succeed to compute verified bounds. Still,790

This manuscript is for review purposes only.

VERIFIED ERROR BOUNDS FOR SPARSE SYSTEMS PART II 27

Table 12
Displayed tests extracted from the 306 tests in Table 11.

- all tests where “new” failed

- all tests where “new0” failed

- all tests where the maximal relative error by “new” is larger than 10−15

- all tests where the maximal relative error by “new0” is larger than 10−15

- all tests where the computing time ratio tnew0/tnew is larger than 1.43

“new” succeeds in 98 cases to compute bounds with at least 11 coinciding figures791

in each entry, “new0” succeeds in all cases. For randomly generated examples there792

is not much difference in the accuracy of the bounds, but “new” is mostly more793

than twice as fast as “new0”. In Figure 7 we show the ratio of computing times794

of Algorithm verifySparselss0 divided by that of Algorithm verifySparselss.795

Algorithm “new” from Part I of this note is always faster than “new0”. As explained

Fig. 7. Ratios of computing times tverifySparselss0/tverifySparselss.

796

before that is related to the number of nonzero elements of the matrices L1.797

We tested Algorithm verifySparselss0 for complex data as well. Some data is798

shown in the url in (9.2). As there were no surprises we refrain, as in Part I of this799

note, from extending our already shown computational data.800

Next we show computational results for rectangular input matrix. As has been801

mentioned, Matlab chooses to minimize the number of nonzero elements of the solution802

rather than computing A+b. Therefore we show only data for least squares problems.803

Since the matrix in (6.2) is a permutation of that in (6.1) this is gives information of804

the underdetermined cases as well. If a test matrix A in [5] has more columns than805

rows we use AH .806

We use all matrices from the Suite Sparse Matrix Collection [5] with dimensions807

(9.3) 103 ⩽m,n ⩽ 105 and 107 ⩽ cnd ⩽ 1016 and nnz(A) ⩽ 106 .808

The condition number of a rectangular matrix with respect to a least squares problem809

This manuscript is for review purposes only.

28 S. M. RUMP

Table 13
Timing and accuracy for sparse linear systems in [5] satisfying the conditions in (9.1).

matrix times relerr new relerr news

n nnz(A) cnd tnew % median max median max

2221 10798 608540 7.0e14 13.97 1.87 3.8e -17 1.1e -16 3.8e -17 1.1e -16

1247 12546 140034 7.6e15 26.47 2.58 NaN NaN NaN NaN

1210 20360 509866 8.1e14 396.42 1.18 NaN NaN 4.2e-17 1.9e -13

1451 20360 509866 8.1e14 391.55 1.14 NaN NaN 4.0e-17 4.3e -15

2229 28216 730080 1.3e14 9.07 1.32 3.7e -17 1.1e -16 3.7e -17 1.1e -16

949 41731 559341 1.9e12 210.97 1.57 3.7e -17 1.1e -16 3.7e -17 1.1e -16

950 51035 707985 7.1e13 4.64 1.32 3.7e -17 5.8e -15 3.7e -17 4.7e -15

1225 64810 565996 5.3e12 24.58 1.37 3.7e -17 1.1e -16 3.7e -17 1.1e -16

243 1080 23094 1.4e12 0.63 1.44 3.5e -17 1.1e -16 3.5e -17 1.1e -16

1074 1220 5892 8.6e12 0.21 1.41 3.5e -17 1.1e -16 3.5e -17 1.1e -16

438 1633 46626 1.9e11 0.87 1.43 3.7e -17 1.1e -16 3.7e -17 1.1e -16

465 2904 58142 3.5e12 0.98 1.50 2.8e -17 1.1e -16 2.8e -17 1.1e -16

439 3096 90841 1.1e11 2.18 1.70 3.7e -17 1.1e -16 3.7e -17 1.1e -16

548 5850 42568 1.8e13 2.29 1.51 3.4e -17 1.1e -16 3.4e -17 1.1e -16

818 6316 167178 4.5e14 2.97 1.76 3.7e -17 1.1e -16 3.7e -17 1.1e -16

934 7055 30082 1.7e12 1.59 1.12 NaN NaN 4.2e-17 5.6e -14

446 7320 324772 3.3e10 8.71 1.68 3.7e -17 1.1e -16 3.7e -17 1.1e -16

739 7337 156508 7.6e13 2.40 1.35 3.8e -17 2.0e -11 3.8e -17 1.8e -11

920 7500 283992 7.0e11 34.95 2.00 3.8e -17 1.1e -16 3.8e -17 1.1e -16

1395 7548 834222 8.3e12 33.43 0.68 NaN NaN 1.3e-15 4.6e -10

2814 8256 109368 2.1e15 11.91 1.69 3.7e -17 1.1e -16 3.7e -17 1.1e -16

448 9035 335472 2.1e14 4.87 1.49 3.5e -17 1.1e -16 3.5e -17 1.1e -16

580 9129 52883 1.7e14 4.72 1.65 3.7e -17 1.1e -16 3.7e -17 1.1e -16

581 9129 52883 7.5e13 4.60 1.64 3.7e -17 1.1e -16 3.7e -17 1.1e -16

1405 10605 424587 4.2e12 2.87 1.38 1.2e -17 1.1e -16 1.2e -17 1.1e -16

741 10672 232633 2.3e14 3.96 1.48 3.9e -17 2.2e -9 3.8e -17 8.0e -10

743 10964 233741 1.3e15 6.70 1.62 6.7e -17 5.9e -6 6.5e -17 5.0e -6

921 11532 551184 6.5e12 174.38 2.16 3.7e -17 1.1e -16 3.7e -17 1.1e -16

550 11790 107383 2.8e13 8.87 1.79 3.5e -17 1.1e -16 3.5e -17 1.1e -16

570 13694 72734 1.3e14 3.98 1.69 3.6e -17 1.1e -16 3.6e -17 1.1e -16

745 14270 307858 1.3e15 8.04 1.49 9.3e -17 2.7e -6 8.2e -17 1.6e -6

551 14760 145157 6.7e13 14.37 1.90 3.5e -17 1.1e -16 3.5e -17 1.1e -16

922 16428 948696 4.2e13 471.99 2.22 3.6e -17 1.1e -16 3.6e -17 1.1e -16

747 17576 381975 1.2e15 27.89 0.79 1.1e -15 4.2e -5 5.9e -16 2.2e -5

553 17730 183325 2.4e13 26.55 1.91 3.5e -17 1.1e -16 3.5e -17 1.1e -16

582 18289 106803 3.6e14 14.49 1.81 3.7e -17 1.1e -16 3.7e -17 1.1e -16

583 18289 106803 5.1e13 13.93 1.81 3.7e -17 1.1e -16 3.7e -17 1.1e -16

431 19716 227872 8.8e12 6.83 1.32 4.0e -17 1.5e -12 3.8e -17 4.8e -14

572 20614 111903 3.9e14 7.41 1.85 3.7e -17 3.1e -13 3.6e -17 9.1e -14

555 23670 259648 3.2e13 46.80 2.02 3.5e -17 1.1e -16 3.5e -17 1.1e -16

1109 25187 193276 1.9e14 5.52 1.48 3.6e -17 1.1e -16 3.6e -17 1.1e -16

1111 25187 193216 2.0e14 5.73 1.50 3.7e -17 1.1e -16 3.7e -17 1.1e -16

584 27449 160723 6.4e14 24.71 1.87 3.7e -17 1.1e -16 3.7e -17 1.1e -16

585 27449 160723 5.1e13 24.26 1.88 3.8e -17 5.9e -15 3.8e -17 4.3e -16

574 27534 151063 6.3e14 12.88 2.29 4.0e -17 2.4e -10 4.0e -17 1.4e -10

557 29610 335972 2.6e13 59.97 2.00 3.6e -17 1.1e -16 3.6e -17 1.1e -16

This manuscript is for review purposes only.

VERIFIED ERROR BOUNDS FOR SPARSE SYSTEMS PART II 29

Table 14
Timing and accuracy for sparse linear systems in [5] satisfying the conditions in (9.1).

matrix times relerr new relerr news

n nnz(A) cnd tnew % median max median max

576 34454 190224 9.4e14 17.73 2.26 4.6e -17 9.1e -9 4.4e -17 3.3e -9

559 35550 412306 3.6e13 83.83 2.00 3.6e -17 1.1e -16 3.6e -17 1.1e -16

586 36609 214643 1.1e15 36.29 1.83 3.8e -17 6.5e -14 3.7e -17 4.0e -15

587 36609 214643 5.8e13 35.07 1.87 3.7e -17 2.1e -12 3.7e -17 1.3e -13

1316 37261 443573 2.2e10 43.76 1.86 3.7e -17 1.1e -16 3.7e -17 1.1e -16

1371 39899 195429 2.8e15 2.93 1.58 3.5e -17 1.1e -16 3.5e -17 1.1e -16

2815 40816 803978 4.4e13 411.55 1.76 3.5e -17 1.1e -16 3.5e -17 1.1e -16

578 41374 229385 1.6e15 31.55 2.48 2.5e -16 7.4e -4 6.8e -17 2.1e -5

561 41490 488633 3.4e13 131.50 2.10 3.5e -17 1.1e -16 3.5e -17 1.1e -16

588 45769 268563 1.7e15 48.49 1.89 3.7e -17 2.8e -11 3.7e -17 2.6e -12

589 45769 268563 5.8e13 46.75 1.84 3.7e -17 6.4e -10 3.7e -17 3.3e -11

563 47430 564952 1.1e14 130.58 2.03 3.5e -17 1.1e -16 3.5e -17 1.1e -16

1413 49702 333029 1.5e15 41.28 1.43 3.7e -17 4.2e -13 3.7e -17 8.4e -14

1414 49702 332807 4.0e13 17.81 1.39 3.7e -17 2.7e -15 3.7e -17 2.7e -16

1375 51032 247528 2.3e15 3.87 1.97 3.5e -17 2.6e -15 3.5e -17 2.9e -15

983 51993 380415 9.4e15 221.62 1.80 2.9e -17 1.1e -16 2.9e -17 1.1e -16

565 53370 641290 5.8e13 162.73 2.05 3.5e -17 1.4e -16 3.5e -17 1.1e -16

590 54929 322483 3.6e15 62.44 1.89 3.7e -17 1.3e -9 3.7e -17 3.7e -11

591 54929 322483 5.8e13 61.02 1.85 3.7e -17 5.6e -8 3.7e -17 2.1e -9

567 59310 717620 1.4e14 219.66 2.07 3.5e -17 1.7e -15 3.5e -17 1.2e -16

592 64089 376395 7.9e15 75.23 1.83 3.7e -17 6.5e -7 3.7e -17 9.5e -8

593 64089 376395 5.8e13 73.71 1.87 3.7e -17 1.5e -4 3.7e -17 1.8e -6

373 80209 307604 5.7e11 9.05 2.09 2.7e -17 3.6e -13 2.7e -17 3.1e -13

1374 87190 606489 2.0e15 17.88 2.11 3.7e -17 1.5e -16 3.7e -17 2.2e -16

2657 87936 593276 4.1e10 18.49 2.03 3.6e -17 1.1e -16 3.6e -17 1.1e -16

1343 94294 476766 5.6e12 17.26 2.48 3.7e -17 1.1e -16 3.7e -17 1.1e -16

1344 94294 479246 5.6e12 25.08 1.90 3.7e -17 1.1e -11 3.7e -17 7.7e -12

1345 94294 479151 5.6e12 20.01 2.65 3.7e -17 7.4e -14 3.7e -17 4.3e -14

919 16428 63406 1.2e14 2.50 1.37 3.6e -17 1.1e -16 3.6e -17 1.1e -16

2566 20468 206076 9.4e10 2.71 1.40 3.7e -17 1.1e -16 3.7e -17 1.1e -16

2567 40948 412148 9.4e10 5.98 1.63 3.7e -17 1.1e -16 3.7e -17 1.1e -16

288 14734 95053 9.6e3 4.17 1.92 3.7e -17 1.1e -16 3.7e -17 1.1e -16

289 25228 175027 5.3e3 7.92 1.61 3.7e -17 1.1e -16 3.7e -17 1.1e -16

290 84617 463625 7.5e4 22.22 2.10 3.7e -17 1.1e -16 3.7e -17 1.1e -16

2822 17922 561677 2.6e6 4.70 1.34 3.6e -17 1.1e -16 3.6e -17 1.1e -16

2823 32510 1030878 6.3e6 15.76 2.30 3.6e -17 1.1e -16 3.6e -17 1.1e -16

2824 56021 1797934 1.4e7 29.06 1.61 3.6e -17 1.1e -16 3.6e -17 1.1e -16

2825 100037 3226066 3.4e7 63.50 1.74 3.6e -17 1.1e -16 3.6e -17 1.1e -16

2826 178437 5778545 8.2e7 149.03 1.80 3.7e -17 1.1e -16 3.7e -17 1.1e -16

1415 99340 940621 1.5e11 25.01 2.10 3.7e -17 1.1e -16 3.7e -17 1.1e -16

1417 321821 1931828 5.1e22 110.07 4.57 3.7e -17 3.0e -16 3.7e -17 3.0e -16

1419 682862 2638997 9.5e19 768.65 2.57 4.5e -17 2.1e -9 4.5e -17 2.2e -9

326 2534 463360 5.2e5 20.08 1.62 3.7e -17 1.1e -16 3.7e -17 1.1e -16

1407 10605 522387 1.0e15 52.32 1.91 NaN NaN 1.1e-16 1.8e -11

2555 37365 330633 2.7e5 60.08 1.87 3.7e -17 1.1e -16 3.7e -17 1.1e -16

2556 90249 803173 3.2e5 214.20 1.98 3.7e -17 1.1e -16 3.7e -17 1.1e -16

This manuscript is for review purposes only.

30 S. M. RUMP

Table 15
Results for 100 randomly generated ill-conditioned test cases.

“new” “new0”

inclusions failed in 2 out of 100 tests failed in 0 out of 100 tests

median relative error 3.7 ⋅ 10−17 3.7 ⋅ 10−17

maximal relative error 7.8 ⋅ 10−12 5.1 ⋅ 10−12

is a bit tricky. Here cnd denotes the estimated condition number of the augmented810

matrix in (6.1).811

There were no complex examples in [5] satisfying (9.3). The conditions in (9.3)812

lead to 26 test cases because most of the examples where either well-conditioned or813

extremely ill-conditioned, often with condition number ∞. The results are displayed814

in Table 16. As can be seen Algorithm verifySparselss failed for the two cases 1950815

and 2055 of [5], Algorithm verifySparselss0 failed only for the last case 2055.816

There is not too much difference in computing for “new” and “new0”. In the817

median the computing times are almost the same, in the worst case “new” is 2.2818

times faster than “new0”, and ”new0” is 1.3 times faster than “new”.819

A reason is that, in contrast to the square case, there is not much difference in820

the fill-in of the factor L1 because the majority of diagonal elements of the augmented821

matrix (6.1) are already nonzero.822

There is quite a spread in computing time between lu and our new algorithms.823

In the median lu is 1.2 times faster than “new”, but in the worst case “new” is 274824

times faster than lu, and lu is 93 times faster than “new”.825

Both Algorithms “new” and “new0” compute always inclusions with maximal826

accuracy for all entries of the solution. In contrast, the approximations by Matlab’s827

lu are significantly less accurate. The median and maximum relative errors of the828

approximation by lu and “verifySparselss0” are displayed in Figure 8. As can be seen829

in the median some 12 figures of the approximation by lu are correct, but in one case830

only 4 digits of at least one entry of the approximation. In contrast, “verifySparselss0”831

(and also “verifySparselss”) compute almost always maximally accurate inclusions for832

all entries.833

Out of the ill-conditioned test cases satisfying (9.3) there were 37 matrices with834

zero columns. That implies that the matrix is rank-deficient. When deleting those835

columns there was a dichotomy. Either the matrices became well-conditioned, i.e.,836

condition number less than 5 ⋅107, or, the matrices were still extremely ill-conditioned,837

i.e., condition number larger than 3 ⋅ 1020. In the former case it was no problem838

to compute verified inclusions, the latter cases are out of the scope of verification839

methods. Therefore, we refrain from giving additional computational results for those.840

We finally show some test results for systems of nonlinear equations. The first841

source of test examples stems from the MINPACK project [23]. The source code for842

23 examples can be found at843

https://people.sc.fsu.edu/~jburkardt/m_src/test_nonlin/test_nonlin.html}}844

In 4 examples the dimension can be freely specified. In the first example p01 the845

floating-point Newton iteration did not converge. For the other three example p09,846

p13 and p14 we list computational results for different dimensions.847

This manuscript is for review purposes only.

VERIFIED ERROR BOUNDS FOR SPARSE SYSTEMS PART II 31
T
a
b
l
e
1
6

T
im

in
g

a
n

d
a

cc
u

ra
cy

fo
r

sp
a

rs
e

li
n

ea
r

sy
st

em
s

in
[5

]
sa

ti
sf

y
in

g
th

e
co

n
d

it
io

n
s

in
(9

.3
).

m
a
tr
ix

ti
m
es

[
se
c]

r
el
er
r
l
u

r
el
er
r
n
ew

r
el
er
r
n
ew

0

#
m
a
tr
ix

m
n

n
n
z
(
A
)

cn
d

t l
u

t n
e
w

t n
e
w
0

m
ed
ia
n

m
a
x

m
ed
ia
n

m
a
x

m
ed
ia
n

m
a
x

1
5
5

1
0
5
9
5

4
9
2
9

4
6
5
9
1

2
.1

e
1
2

0
.3

0
7

2
.0

0
5

0
.9

9
9

2
.0

e
-1

3
5
.1

e
-9

4
.0

e
-1

7
1
.1

e
-1

6
4
.0

e
-1

7
1
.1

e
-1

6

6
1
5

5
8
3
1

2
1
7
1

3
3
0
8
1

2
.5

e
7

0
.1

4
2

1
.2

0
3

0
.8

0
7

2
.9

e
-1

5
7
.4

e
-1

2
3
.7

e
-1

7
1
.1

e
-1

6
3
.7

e
-1

7
1
.1

e
-1

6

6
2
8

1
7
0
6

1
3
0
9

6
9
3
7

3
.7

e
8

0
.0

3
0

0
.2

8
1

0
.1

9
4

4
.6

e
-1

5
2
.2

e
-1

1
3
.9

e
-1

7
1
.1

e
-1

6
3
.9

e
-1

7
1
.1

e
-1

6

6
9
7

2
3
5
4
1

1
6
6
7
5

7
2
7
2
1

4
.0

e
7

7
0
.9

8
0

3
.8

8
6

3
.6

9
0

2
.8

e
-1

4
1
.1

e
-9

3
.9

e
-1

7
1
.1

e
-1

6
3
.9

e
-1

7
1
.1

e
-1

6

9
8
1

2
9
4
9
3

1
1
8
2
2

1
1
7
9
5
4

1
.7

e
1
0

2
1
.9

1
5

1
3
.5

3
7

1
4
.7

2
9

1
.9

e
-9

2
.6

e
-5

4
.4

e
-1

7
1
.2

e
-1

4
4
.0

e
-1

7
1
.3

e
-1

5

1
7
0
8

3
8
6
0
2

2
4
6
1
7

1
5
6
4
6
6

1
.3

e
9

1
5
8
.6

8
1

4
9
8
.1

1
5

5
7
7
.6

3
9

2
.9

e
-1

4
4
.8

e
-9

3
.8

e
-1

7
1
.1

e
-1

6
3
.8

e
-1

7
1
.1

e
-1

6

1
7
1
3

1
6
3
6
9

1
0
0
9
9

4
4
8
2
5

1
.7

e
1
0

8
.0

2
8

2
.3

3
9

1
.5

6
7

4
.8

e
-1

5
5
.6

e
-1

1
3
.9

e
-1

7
1
.1

e
-1

6
3
.9

e
-1

7
1
.1

e
-1

6

1
7
3
1

1
6
8
1
9

4
4
0
0

1
5
0
3
7
2

4
.4

e
7

0
.3

0
1

2
.1

2
9

2
.2

8
5

1
.9

e
-1

4
3
.6

e
-1

0
3
.9

e
-1

7
1
.1

e
-1

6
3
.9

e
-1

7
1
.1

e
-1

6

1
7
3
7

8
7
3
4

2
3
0
1

6
8
2
2
5

4
.3

e
7

0
.5

3
3

0
.9

1
2

0
.7

6
3

3
.4

e
-1

5
2
.5

e
-1

2
3
.8

e
-1

7
1
.1

e
-1

6
3
.8

e
-1

7
1
.1

e
-1

6

1
7
5
0

7
9
6
7

2
0
9
5

1
9
8
2
6

6
.4

e
8

0
.7

5
4

0
.5

2
0

0
.5

2
6

1
.3

e
-1

5
1
.0

e
-1

2
3
.8

e
-1

7
1
.1

e
-1

6
3
.8

e
-1

7
1
.1

e
-1

6

1
7
5
6

1
9
0
0

1
6
5
0

8
8
9
7

3
.2

e
7

0
.0

4
6

0
.4

9
7

0
.3

4
7

2
.4

e
-1

4
1
.8

e
-7

3
.8

e
-1

7
1
.1

e
-1

6
3
.8

e
-1

7
1
.1

e
-1

6

1
7
7
5

6
3
0
7
6

3
1
7
3

4
9
1
3
3
6

4
.4

e
7

1
9
.0

7
0

3
.0

0
3

2
.6

4
7

1
.3

e
-1

3
3
.5

e
-1

0
3
.7

e
-1

7
1
.1

e
-1

6
3
.7

e
-1

7
1
.1

e
-1

6

1
7
7
9

4
6
9
3
7

6
5
9
0

1
6
4
5
3
8

4
.3

e
1
1

4
8
.6

8
6

3
.7

0
1

4
.1

3
3

3
.0

e
-1

5
9
.7

e
-1

2
3
.6

e
-1

7
1
.1

e
-1

6
3
.6

e
-1

7
1
.1

e
-1

6

1
8
1
6

6
6
5
4

3
1
7
0

1
5
3
9
7

5
.7

e
7

0
.0

1
3

0
.5

6
3

0
.4

9
1

5
.1

e
-1

5
2
.1

e
-1

1
3
.7

e
-1

7
1
.1

e
-1

6
3
.7

e
-1

7
1
.1

e
-1

6

1
8
1
8

8
6
1
7

4
2
8
2

2
0
6
3
5

1
.1

e
8

0
.0

3
2

0
.5

8
8

0
.5

6
5

6
.6

e
-1

5
2
.0

e
-1

0
3
.8

e
-1

7
1
.1

e
-1

6
3
.8

e
-1

7
1
.1

e
-1

6

1
8
2
7

1
3
8
4
7

9
7
4
3

3
5
8
8
5

6
.1

e
7

2
.7

4
5

1
.5

8
7

1
.0

2
5

1
.2

e
-1

5
6
.3

e
-1

2
3
.8

e
-1

7
1
.1

e
-1

6
3
.8

e
-1

7
1
.1

e
-1

6

1
8
2
9

4
6
6
7
9

3
2
8
4
7

1
2
0
1
4
1

6
.5

e
8

3
3
2
.4

9
2

5
.3

7
6

2
.4

1
6

1
.9

e
-1

5
1
.1

e
-1

1
3
.8

e
-1

7
1
.1

e
-1

6
3
.8

e
-1

7
1
.1

e
-1

6

1
8
3
4

2
7
6
9
1

1
4
3
6
4

5
8
4
3
9

5
.7

e
8

1
5
5
.8

2
0

1
.6

7
9

1
.2

7
2

1
.8

e
-1

5
1
.2

e
-1

1
3
.8

e
-1

7
1
.1

e
-1

6
3
.8

e
-1

7
1
.1

e
-1

6

1
8
7
0

2
6
7
2
2

1
1
0
2
8

1
0
2
4
3
2

1
.6

e
7

3
4
.1

0
9

1
.5

5
9

1
.4

9
9

1
.7

e
-1

1
2
.3

e
-7

3
.9

e
-1

7
1
.1

e
-1

6
3
.9

e
-1

7
1
.1

e
-1

6

1
8
7
1

1
4
3
1
8

1
1
0
2
8

5
7
3
7
6

6
.3

e
7

3
2
.0

8
0

2
.5

5
2

1
.2

6
7

8
.2

e
-1

2
7
.5

e
-8

3
.9

e
-1

7
1
.1

e
-1

6
3
.9

e
-1

7
1
.1

e
-1

6

1
8
7
2

2
8
6
3
4

1
1
0
2
8

1
1
5
2
6
2

1
.6

e
7

3
3
.9

1
9

1
.8

5
1

1
.5

9
5

1
.6

e
-1

1
7
.1

e
-8

4
.0

e
-1

7
1
.1

e
-1

6
4
.0

e
-1

7
1
.1

e
-1

6

1
9
4
7

1
3
0
2

1
1
2
1

1
1
1
8
5

5
.0

e
7

0
.0

2
3

0
.7

3
0

0
.9

2
3

1
.2

e
-1

3
5
.7

e
-1

1
3
.9

e
-1

7
1
.1

e
-1

6
3
.9

e
-1

7
1
.1

e
-1

6

1
9
4
8

3
1
6
0

2
6
4
4

2
9
8
6
2

3
.1

e
8

0
.1

1
3

6
.8

3
2

8
.2

1
1

1
.5

e
-1

2
1
.2

e
-8

3
.8

e
-1

7
1
.1

e
-1

6
3
.8

e
-1

7
1
.1

e
-1

6

1
9
4
9

7
7
4
2

6
3
3
4

8
0
0
5
7

2
.3

e
9

1
.1

0
3

3
0
2
.4

8
4

2
1
1
.1

3
5

1
.3

e
-1

1
8
.3

e
-9

3
.9

e
-1

7
1
.1

e
-1

6
3
.9

e
-1

7
1
.1

e
-1

6

1
9
5
0

1
9
3
2
1

1
5
4
3
7

2
1
6
1
7
3

1
.5

e
1
0

1
4
.9

9
3

5
1
3
1
.5

7
0

2
0
6
7
.8

0
7

1
.5

e
-1

1
4
.7

e
-7

N
a
N

N
a
N

3
.9

e
-1

7
1
.1

e
-1

6

2
0
5
5

3
0
0
3

1
7
1
6

1
2
0
1
2

9
.0

e
1
5

0
.1

6
7

3
4
.0

5
0

9
1
.8

2
2

N
a
N

N
a
N

N
a
N

N
a
N

N
a
N

N
a
N

This manuscript is for review purposes only.

32 S. M. RUMP

To further investigate the performance of our algorithms, we consider two other exam-848

ples with specifiable dimension. The first [22], abbreviated by MC, is a discretization849

of850

MC ∶ u′′ = .5 ∗ (u + t + 1)3 with u(0) = u(1) = 0851

and initial approximation xk = tk(tk − 1) for tk = k/(n + 1).852

The second example [1], abbreviated by AB, is a discretization of853

AB ∶ 3y′′y + (y′)2 = 0 with y(0) = 0 and y(1) = 20854

with true solution 20x3/4. The initial approximation specified in [1] is 10*ones(n,1).855

Fig. 8. Median of relative errors of verifySparselss and verifySparselss0.

The results for Algorithm “verifySparseNlss” are shown in Table 17. We compare856

three algorithm. The first is “verifySparseNlss” listed in Table 9 and called “new” in857

Table 17. It calls the modified Algorithm “verifySparselss” as in Table 6 in Part I of858

this note to solve the linear system with interval right hand side. Secondly, we use859

Algorithm “verifySparselss0” as in Table 10 as the linear system solver. In Table 17860

it is called “new0”. As a third algorithm we use the built-in Matlab routine fsolve.861

The columns are self-explaining except “iter” for “new” and “new0” which dis-862

plays the number kxs of (approximate) Newton iterates and the number kY of interval863

iterates.864

All routines have as input parameters a reference to the function in use as well865

as an initial approximation. For the functions p09, p13 and p14 we use the starting866

values specified in [23]. Except AB we treat dimensions from 103 to 107.867

INTLAB contains Algorithm verifynlss for solving systems of nonlinear equa-868

tions. It is based on Theorem 7.2 using an approximate inverse R of the Jacobian at869

x̃ which is, in general, a full matrix. For dimension n = 104 that requires, for example,870

some 800 megabytes of memory. All of our 5 examples are solved successfully by871

verifynlss, but larger dimensions are prohibitive for our laptop.872

This manuscript is for review purposes only.

VERIFIED ERROR BOUNDS FOR SPARSE SYSTEMS PART II 33
T
a
b
l
e
1
7

T
im

in
g

a
n

d
a

cc
u

ra
cy

fo
r

sy
st

em
s

o
f

n
o

n
li

n
ea

r
eq

u
a

ti
o

n
s

w
it

h
sp

a
rs

e
J

a
co

bi
a

n
.

p
r
o
bl
em

ti
m
es

[
se
c]

it
er
a
n
d
r
el
er
r
n
ew

it
er
a
n
d
r
el
er
r
n
ew

0
r
el
er
r
f
s
o
l
v
e

n
t n

e
w

t n
e
w
0

t f
s
o
l
v
e

it
er

m
ed
ia
n

m
a
x

it
er

m
ed
ia
n

m
a
x

m
ed
ia
n

m
a
x

p
0
9

1
,0

0
0

0
.1

0
.1

0
.4

5
/
2

3
.0

e
-1

1
1
.6

e
-1

0
5
/
2

5
.9

e
-1

1
1
.6

e
-1

0
0
.2

0
0
.3

3

1
0
,0

0
0

0
.2

0
.2

5
.5

5
/
2

3
.0

e
-9

9
.6

e
-9

5
/
2

5
.9

e
-9

1
.2

e
-8

0
.3

4
0
.5

0

1
0
0
,0

0
0

1
.2

1
.2

6
/
2

3
.1

e
-7

1
.3

e
-6

6
/
2

6
.3

e
-7

1
.3

e
-6

o
u

t
o
f

m
em

o
ry

1
,0

0
0
,0

0
0

1
4
.9

1
4
.8

1
0
/
2

3
.0

e
-5

1
.5

e
-4

1
0
/
2

5
.9

e
-5

1
.5

e
-4

o
u

t
o
f

m
em

o
ry

1
0
,0

0
0
,0

0
0

2
1
5
.9

2
3
1
.0

1
3
/
2

3
.0

e
-3

9
.6

e
-3

1
3
/
2

6
.0

e
-3

1
.2

e
-2

o
u

t
o
f

m
em

o
ry

p
1
3

1
,0

0
0

0
.1

0
.1

0
.4

6
/
1

6
.3

e
-1

6
2
.0

e
-1

5
6
/
3

9
.5

e
-1

6
2
.8

e
-1

5
3
.2

e
-1

5
7
.5

e
-1

4

1
0
,0

0
0

0
.2

0
.2

2
4
.6

6
/
1

6
.3

e
-1

6
2
.0

e
-1

5
6
/
2

9
.5

e
-1

6
2
.8

e
-1

5
5
.9

e
-1

3
1
.9

e
-1

1

1
0
0
,0

0
0

1
.1

2
.1

6
/
1

6
.3

e
-1

6
2
.0

e
-1

5
6
/
2

9
.5

e
-1

6
2
.8

e
-1

5
o
u

t
o
f

m
em

o
ry

1
,0

0
0
,0

0
0

1
1
.5

2
1
.5

6
/
1

6
.3

e
-1

6
2
.0

e
-1

5
6
/
2

9
.5

e
-1

6
2
.8

e
-1

5
o
u

t
o
f

m
em

o
ry

1
0
,0

0
0
,0

0
0

1
3
4
.2

6
/
1

6
.3

e
-1

6
2
.0

e
-1

5
fa

il
ed

o
u

t
o
f

m
em

o
ry

p
1
4

1
,0

0
0

0
.6

0
.6

1
.9

7
/
1

7
.2

e
-1

6
1
.5

e
-1

5
7
/
2

1
.5

e
-1

5
3
.4

e
-1

5
1
.5

e
-1

5
7
.0

e
-9

1
0
,0

0
0

0
.5

0
.2

1
4
9
.2

7
/
1

7
.2

e
-1

6
1
.5

e
-1

5
7
/
2

1
.5

e
-1

5
5
.4

e
-1

6
5
.4

e
-1

6
1
.1

e
-1

4

1
0
0
,0

0
0

7
.0

3
4
.2

7
/
1

1
.5

e
-1

5
2
.9

e
-1

5
7
/
2

2
.9

e
-1

5
8
.0

e
-1

5
o
u

t
o
f

m
em

o
ry

1
,0

0
0
,0

0
0

8
8
.8

2
2
6
4
.6

7
/
1

1
.5

e
-1

5
2
.9

e
-1

5
7
/
2

2
.9

e
-1

5
8
.0

e
-1

5
o
u

t
o
f

m
em

o
ry

1
0
,0

0
0
,0

0
0

7
0
8
8
.9

7
/
1

1
.5

e
-1

5
2
.9

e
-1

5
fa

il
ed

o
u

t
o
f

m
em

o
ry

M
C

1
,0

0
0

0
.2

0
.2

0
.4

4
/
2

1
.1

e
-1

4
8
.1

e
-1

0
4
/
2

1
.6

e
-1

5
6
.4

e
-1

0
0
.0

0
1
4

0
.0

0
1
7

1
0
,0

0
0

0
.3

0
.4

2
7
.9

4
/
2

1
.3

e
-1

3
8
.4

e
-8

4
/
2

7
.9

e
-1

5
6
.6

e
-8

0
.0

0
1
1

0
.0

0
1
3

1
0
0
,0

0
0

1
6
.1

fa
il
ed

4
/
2

1
.2

e
-1

2
9
.2

e
-6

o
u

t
o
f

m
em

o
ry

1
,0

0
0
,0

0
0

2
0
7
9
.7

fa
il
ed

5
/
2

1
.1

e
-1

1
6
.1

e
-4

o
u

t
o
f

m
em

o
ry

1
0
,0

0
0
,0

0
0

fa
il
ed

fa
il
ed

o
u

t
o
f

m
em

o
ry

A
B

1
0
0

0
.7

0
.5

0
.4

1
0
/
2

3
.8

e
-1

6
1
.6

e
-1

3
1
0
/
2

5
.1

e
-1

6
4
.4

e
-1

4
1
.1

e
-1

2
1
.2

e
-1

1

1
,0

0
0

0
.2

0
.2

0
.9

1
2
/
2

3
.9

e
-1

6
2
.6

e
-1

1
1
2
/
2

5
.5

e
-1

6
8
.4

e
-1

3
2
.1

e
-9

2
.2

e
-7

5
,0

0
0

0
.4

0
.4

2
2
.1

1
4
/
3

3
.9

e
-1

6
7
.8

e
-1

0
1
4
/
2

7
.8

e
-1

6
1
.3

e
-1

1
2
.0

e
-7

1
.3

e
-5

9
,0

0
0

1
.0

0
.7

6
7
.0

1
5
/
5

3
.9

e
-1

6
2
.7

e
-9

1
5
/
2

1
.0

e
-1

5
3
.9

e
-1

1
6
.7

e
-6

0
.0

0
3
7

1
0
,0

0
0

0
.8

fa
il
ed

1
5
/
2

8
.7

e
-1

6
7
.2

e
-1

1
o
u

t
o
f

m
em

o
ry

3
0
,0

0
0

5
.5

fa
il
ed

1
5
/
3

1
.3

e
-1

5
1
.4

e
-1

0
o
u

t
o
f

m
em

o
ry

5
0
,0

0
0

1
4
.4

fa
il
ed

1
5
/
3

1
.6

e
-1

4
1
.5

e
-9

o
u

t
o
f

m
em

o
ry

6
0
,0

0
0

fa
il
ed

fa
il
ed

o
u

t
o
f

m
em

o
ry

This manuscript is for review purposes only.

34 S. M. RUMP

The same seems to apply to Matlab’s fsolve. As can be seen in Table 17,873

Algorithm fsolve computes an approximation for dimensions up to 104; for larger874

dimensions it fails with error “out of memory”. For problem “MC” the approximation875

is in the median accurate to some 3 decimal digits, for problem p09 only one figure is876

correct.877

Our algorithms for a nonlinear system with sparse Jacobian work successfully up878

dimension 107. For the problems p09, p13 and p14, “new” based on the linear system879

solver “verifySparselss” in Part I of this note computes verified bounds successfully880

for n ⩽ 107, while “new0” based on “verifySparselss0” presented in this note fails for881

problems p13 and p14 and dimension n = 107. Moreover, “new0” is much slower than882

“new” for problem p14.883

Contrary, for problems MC and AB “new0” is successful for larger dimensions884

than “new”. For problem AB, with increasing dimension the increasing difficulty885

of “new0” to compute verified bounds can be seen in Table 17. The number kxs of886

approximate Newton iterates increases to the limit, and eventually also the number of887

interval iterations. The median relative error of the inclusion does not change much,888

but the maximal error increases. However, that is basically due to the first entries of889

the solution with small magnitude.890

10. Conclusion and an open problem. In this Part II of our note we dis-891

cussed a second Algorithm for computing verified error bounds for a linear system892

with sparse input matrix. The bounds are correct with mathematical certainty in-893

cluding the proof of nonsingularity of the input matrix. As the method in Part I it is894

applicable to real and complex data including data afflicted with tolerances.895

The second algorithm is usually slower than the first one presented in Part I of this896

note, but seems a little more stable. Our methods are usually slower than Matlab’s897

built-in solver lu, but sometimes faster by two orders of magnitude.898

Moreover, we gave algorithms to compute verified bounds for least squares prob-899

lems as well as for underdetermined linear systems. Computational evidence suggests900

that even for very ill-conditioned problems accurate bounds are computed.901

As an application of the solution of linear systems the data of which are afflicted902

with tolerances we described a method to compute verified error bounds for a system903

of real or complex nonlinear equations. The nonlinear problem is transformed into a904

linear system with point matrix and interval right hand side. In practical applications905

the Jacobian is often sparse. In that case our method is superior to existing algorithms906

such as Algorithm verifynlss in INTLAB. Computational tests show that the new907

method is successful on our small laptop for dimensions up to 107.908

The primary goal of our algorithms is to be successful, accepting some penalty in909

computing time. The second goal is to compute narrow error bounds. To the latter910

end we described a method to obtain even more accurate error bounds for the solution911

of linear systems such that almost always error bounds with maximal accuracy are912

delivered for all entries.913

The methods in Part I and II of this note are based on a matrix decomposition.914

There are numerous iterative methods to compute an approximation of a sparse lin-915

ear system, and many people think that is at least an attractive way to attack sparse916

systems. These approximations may be used for a verification method, but the com-917

putation of rigorous bounds based on an iterative method is completely open. There918

are error estimates, but those are qualitative and/or theoretical and not computable.919

Up to now some factorization is the only way for the step from a small residual to a920

verified inclusion.921

This manuscript is for review purposes only.

VERIFIED ERROR BOUNDS FOR SPARSE SYSTEMS PART II 35

REFERENCES922

[1] J.P. Abbott and R.P. Brent. Fast Local Convergence with Single and Multistep Methods for923
Nonlinear Equations. Austr. Math. Soc. 19 (Series B), pages 173–199, 1975.924

[2] P. Ahrens, J. Demmel, and H.D. Nguyen. Algorithms for efficient reproducible floating-point925
summation. ACM TOMS, 46:1–49, 2020.926

[3] I.J. Anderson. A distillation algorithm for floating-point summation. SIAM J. Sci. Comput.,927
20:1797–1806, 1999.928

[4] G. Corliss, C. Faure, A. Griewank, L. Hascoët, and U. Nauman. Automatic Differentiation of929
Algorithms – From Simulation to Optimisation. Springer-Verlag, Berlin, 2002.930

[5] T.A. Davis, Y. Hu: The University of Florida Sparse Matrix Collection. ACM Transactions on931
Mathematical Software 38, 1, Article 1, 2011.932

[6] J.B. Demmel. On floating point errors in Cholesky. LAPACK Working Note 14 CS-89-87,933
Department of Computer Science, University of Tennessee, Knoxville, TN, USA, 1989.934

[7] J. Demmel, Y. Hida. Accurate and efficient floating point summation. SIAM J. Sci. Comput.935
(SISC), 25:1214–1248, 2003.936

[8] I.S. Duff, J. Koster. On algorithms for permuting large entries to the diagonal of a sparse937
matrix. SIAM Journal on Matrix Analysis and Applications (SIMAX), 22 (4):973–996,938
2001.939

[9] Iain S. Duff. Ma57—a code for the solution of sparse symmetric definite and indefinite systems.940
ACM Trans. Math. Softw., 30(2):118–144, 2004.941

[10] A. Griewank. A Mathematical View of Automatic Differentiation. In Acta Numerica, volume 12,942
pages 321–398. Cambridge University Press, 2003.943

[11] N. J. Higham: Accuracy and Stability of Numerical Algorithms, SIAM Publications, Philadel-944
phia, 2nd edition, 2002.945

[12] P. Holoborodko. Multiprecision Computing Toolbox for MATLAB 4.6.4.13348. Advanpix LLC.,946
Yokohama, Japan, 2019.947

[13] IEEE Standard for Floating-point Arithmetic. IEEE Std 754-2019 (Revision of IEEE 754-948
2008), pages 1–84, 2019.949

[14] D. E. Knuth: The Art of Computer Programming: Seminumerical Algorithms, volume 2.950
Addison Wesley, Reading, Massachusetts, 1969.951

[15] S.P. Kolodziej, M. Aznaveh, M. Bullock, J. David, T.A. Davis, M. Henderson, Y. Hu, R.952
Sandstrom: The SuiteSparse Matrix Collection Website Interface. Journal of Open Source953
Software 4, 35, 1244-1248, 2019.954

[16] C.-P. Jeannerod, S.M. Rump. Improved error bounds for inner products in floating-point955
arithmetic. SIAM J. Matrix Anal. Appl. (SIMAX), 34(2):338–344, 2013.956

[17] M. Lange and S.M. Rump. Error estimates for the summation of real numbers with application957
to floating-point summation. BIT, 57:927–941, 2017.958

[18] M. Lange, S.M. Rump. Sharp estimates for perturbation errors in summations. Math.Comp.,959
88:349–368, 2019.960

[19] M. Lange and S.M. Rump. Floating-point matrix products with improved accuracy part I:961
theoretical background. to appear.962

[20] M. Lange and S.M. Rump. Floating-point matrix products with improved accuracy part II:963
Schemes for matrix products. to appear.964

[21] MATLAB. User’s Guide, Version 2023b, the MathWorks Inc., 2023.965
[22] J.J. Moré and M.Y. Cosnard. Numerical solution of non-linear equations. ACM Trans. Math.966

Software, 5:64–85, 1979.967
[23] J.J. Moré, D.C. Sorensen, K.E. Hillstrom, and B.S. Garbow. The MINPACK project. In W.J.968

Cowell, editor, Sources and Development of Mathematical Software, pages 88–111. Prentice969
Hall, 1984.970

[24] J.-M. Muller, N. Brunie, F. de Dinechin, C.-P. Jeannerod, M. Joldes, V. Lefèvre, G. Melquiond,971
R. Revol,, S. Torres. Handbook of Floating-Point Arithmetic. Birkhäuser Boston, 2nd972
edition, 2018.973

[25] A. Neumaier. Rundungsfehleranalyse einiger Verfahren zur Summation endlicher Summen.974
Zeitschrift für Angew. Math. Mech. (ZAMM), 54:39–51, 1974.975

[26] A. Neumaier: Interval methods for systems of equations. Encyclopedia of Mathematics and its976
Applications. Cambridge University Press, 1990.977

[27] A. Neumaier. Grand challenges and scientific standards in interval analysis. Reliable Computing,978
8(4):313–320, 2002.979

[28] T. Ogita, S. M. Rump, S. Oishi: Accurate sum and dot product. SIAM Journal on Scientific980
Computing (SISC), 26(6):1955–1988, 2005.981

[29] S. Oishi, K. Ichihara, M. Kashiwagi, T. Kimura, X. Liu, H. Masai, Y. Morikura, T. Ogita,982

This manuscript is for review purposes only.

36 S. M. RUMP

K. Ozaki, S. M. Rump, K. Sekine, A. Takayasu, N. Yamanaka: Principle of Verified983
Numerical Computations. Corona Publisher, Tokyo, Japan, 2018. [in Japanese].984

[30] K. Ozaki, T. Ogita, and S. Oishi. Tight and efficient enclosure of matrix multiplication by985
using optimized BLAS. Numerical Linear Algebra with Applications, 18(2):237–248, 2011.986

[31] K. Ozaki, T. Ogita, and S. Oishi. Improvement of error-free splitting for accurate matrix987
multiplication. Journal of Computational and Applied Mathematics, 288:127–140, 2015.988

[32] K. Ozaki, T. Ogita, and S. Oishi. Error-free transformation of matrix multiplication with a989
posteriori validation. Numerical Linear Algebra with Applications, 23(5):931–946, 2016.990

[33] K. Ozaki, T. Ogita, S.M. Rump, and S. Oishi. Fast algorithms for floating-point interval matrix991
multiplication. Journal of Computational and Applied Mathematics, 236(7):1795–1814,992
2012.993

[34] K. Ozaki, T. Ogita, S. Oishi, and S.M. Rump. Error-free transformations of matrix multi-994
plication by using fast routines of matrix multiplication and its applications. Numerical995
Algorithms, 59(1):95–118, 2012.996

[35] K. Ozaki, T. Ogita, S. Oishi, and S.M. Rump. Generalization of Error-Free Transformation997
for Matrix Multiplication and its Application. Nonlinear Theory and its Applications,998
4(1):2–11, 2013.999

[36] S.M. Rump. Kleine Fehlerschranken bei Matrixproblemen. PhD thesis, Universität Karlsruhe,1000
1980.1001

[37] S.M. Rump. Validated Solution of Large Linear Systems. In R. Albrecht, G. Alefeld, H.J.1002
Stetter, editors, Validation numerics: theory and applications, volume 9 of Computing1003
Supplementum, pages 191–212. Springer, 1993.1004

[38] S.M. Rump. Verified Computation of the Solution of Large Sparse Linear Systems. Zeitschrift1005
für Angewandte Mathematik und Mechanik (ZAMM), 75:S439–S442, 1995.1006

[39] S. M. Rump: INTLAB – INTerval LABoratory. In Tibor Csendes, editor, Developments in1007
Reliable Computing, pages 77–104. Springer Netherlands, Dordrecht, 1999.1008

[40] S.M. Rump. Verified Solution of Large Linear and Nonlinear Systems. In H. Bulgak, C.1009
Zenger, editors, Error Control and adaptivity in Scientific Computing, pages 279–298.1010
Kluwer Academic Publishers, 1999.1011

[41] S. M. Rump: Verification methods: Rigorous results using floating-point arithmetic. Acta1012
Numerica, 19:287–449, 2010.1013

[42] S.M. Rump. Improved componentwise verified error bounds for least squares problems and1014
underdetermined linear systems. 66:309–322, 2013.1015

[43] S.M. Rump, T. Ogita. Super-fast validated solution of linear systems. Journal of Computa-1016
tional and Applied Mathematics (JCAM), 199(2):199–206, 2006. Special issue on Scientific1017
Computing, Computer Arithmetic, and Validated Numerics (SCAN 2004).1018

[44] S.M. Rump, T. Ogita, and S. Oishi. Accurate floating-point summation part I: Faithful round-1019
ing. SIAM J. Sci. Comput. (SISC), 31(1):189–224, 2008.1020

[45] R. Skeel. Iterative Refinement Implies Numerical Stability for Gaussian Elimination. Math.1021
Comp., 35(151):817–832, 1980.1022

[46] Terao T., K. Ozaki. Method for verifying solutions of sparse linear systems with general1023
coefficients. 2024. https://arxiv.org/abs/2406.02033.1024

[47] G. Zielke, V. Drygalla. Genaue Lösung linearer Gleichungssysteme. GAMM Mitt. Ges. Angew.1025
Math. Mech., 26:7–108, 2003.1026

This manuscript is for review purposes only.

	Introduction
	Approximation and estimation of matrix residuals
	Inertia of a 2 2 Hermitian matrix
	Symmetric matrices
	General matrices
	Least squares problems and underdetermined linear systems
	Systems of nonlinear equations
	Complex sparse linear systems, data with tolerances and the final sparse lss algorithms
	Test results
	Conclusion and an open problem
	References

