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Faithfully Rounded Floating-point Computations

MARKO LANGE, Waseda University

SIEGFRIED M. RUMP, Hamburg University of Technology

We present a pair arithmetic for the four basic operations and square root. It can be regarded as a simplified,

more efficient double-double arithmetic. We prove rigorous error bounds for the computed result depending

on the relative rounding error unit u according to base β , the size of the arithmetic expression, and possibly a

condition measure. Under precisely specified assumptions, the result is proved to be faithfully rounded for up

to 1/
√
βu − 2 operations. The assumptions are weak enough to apply to many algorithms. For example, our

findings cover a number of previously published algorithms to compute faithfully rounded results, among them

Horner’s scheme, products, sums and dot products, or Euclidean norm. Beyond that, several other problems

can be analyzed such as polynomial interpolation, orientation problems, Householder transformations, or the

smallest singular value of Hilbert matrices of large size.
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1 INTRODUCTION
Usually, an arithmetic expression evaluated using floating-point arithmetic produces a reasonably

good approximation of the true result; however, the accuracy may be severely reduced due to

cancellation. One way to diminish that effect is compensated evaluation [12, 16, 18]. Another

approach is to increase the precision, either by the hard-/software implementation of a high

precision format [13–15] or the simulation via multiple standard precision numbers. One example

for the latter is the double-double format [1], in which results are represented as unevaluated sums

of two floating-point numbers. On these pairs, arithmetic operations are defined.

In some cases the accuracy of the computed result can be estimated a priori. Examples are

products of floating-point numbers [6], Horner’s scheme [5], summation and dot product [17], or

the Euclidean norm of a vector [7]. For a detailed analysis with error bounds cf. [11].

In this note we present a general evaluation scheme for arithmetic expressions consisting of

addition, subtraction, multiplication, division, and square root. For applications like the ones listed

above, where the accuracy can be estimated a priori, this evaluation scheme enables us to compute

a faithfully rounded result, provided that precisely specified conditions are met. The arithmetic

expression may be evaluated in any order.

To achieve that, we extend floating-point numbers by an error term. For such pairs with a

significant and an error part, we define the classical arithmetic operations and square root. The

significant part of the result is always equal to the result obtained by ordinary floating-point

arithmetic, whereas the additional error term increases the precision. A main difference to the

double-double approach is the omission of the final normalization steps. Therefore, the digits of

the significant and the error part may overlap.
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Ourmain results are as follows. Let an arithmetic expression comprising of additions, subtractions,

multiplications, divisions, and square roots be given. Suppose that in the subtrees of square roots

and of denominators of divisions no cancellation on computed data occurs, and that the number of

operations in those subtrees is roughly bounded by u−1/2
. Then our pair arithmetic computes a

result with an error bounded by γk2ku2
, where γ is an explicit known small constant close to 1, k

denotes the total number of operations, and k is related to the condition number. Moreover, if no

cancellation occurs on computed data, then k = 1. In that case, for up to about (βu)−1/2
operations,

which is about 6.7 · 10
7
for binary64, the computed result is a faithful rounding of the correct result.

Our aim is to keep the additional effort for computing the error terms as small as possible,

eventually accepting a mandatory restriction on the number of operations of about u−1/2
. That

might be a practical issue when using IEEE 754 binary32, and we could lift that bound to about u−1

by investing more computational effort. However, rather than using our pair arithmetic on binary32

as a base type, the computation could be performed directly and faster in binary64. Therefore, we

opted on fast pair algorithms eventually accepting the limit of about 10
8
operations for base type

binary64.

Having said that, in this note we assume only rather general properties to be satisfied by the

underlying floating-point arithmetic. Our estimates hold true for any base β , with any rounding of

ties, and without explicit restrictions of the mantissa or exponent length of the underlying format.

In the sequel, we start with some notations, followed by definitions, the main results and proofs.

In the last section, we give some rationale on how to add other functions to our pair arithmetic and

discuss a selection of applications. We assume familiarity by the reader with floating-point error

estimates; a very nice source is [16].

2 NOTATION AND ASSUMPTIONS
Let F be a set of floating-point numbers with base β adhering to the IEEE 754 standard [9, 10], and

denote by fl: R→ F a rounding to the nearest floating-point number with any rounding of ties.

For an arithmetic expression consisting of several operations, we use the short notation float(. . .)
to indicate that for each operation the corresponding floating-point operation is to be used. For

example, д = float(t + (af +be)) means д = fl(t + fl(fl(a · f )+ fl(b · e))). The order of execution will

always be made unique using parentheses.

The error constant u to anm-digit floating-point system with base β is u := 1

2
β1−m

. Furthermore,

we abbreviate

v :=
u

1 + u
, ω := 1 + v, and ω̄ := 1 + u. (1)

The constants defined in (1) satisfy the relations

ω̄v = u, ω̄ =
1

1 − v
, and ωω̄ = 1 + 2u,

which we often use throughout this note. In the following sections we suppose the floating-point

operations to satisfy the first error model (cf. [16]). To be precise:

Assumption 1. Let c be the result of a floating-point operation and let ĉ denote the true result of
the corresponding real operation. Then

c = ĉ(1 + ε) with |ε | ≤ v. (2)

Particularly, this assumption is satisfied if neither underflow errors nor overflow occur
1
. Another

frequently used equation is an immediate consequence of (2):

ω̄−1sĉ = (1 − v)sĉ ≤ sc ≤ (1 + v)sĉ = ωsĉ, (3)

1
Note that floating-point addition and subtraction with result in the underflow range is error-free.
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which is satisfied for any real number s with sĉ ≥ 0.

For reasons of clarity, we skip the difference operation from the following discussion and only

consider the set of operations {+, ·, /,
√
}. This is because the algorithm for subtraction is directly

derived from our algorithm for addition by negating the second argument, and because the negation

of a floating-point number is error-free.

We aim to define floating-point operations with an error term so that for certain arithmetic

expressions a faithfully rounded result is computed. The definition of the latter is as follows.

Definition 2.1. Let r̃ ∈ F be given and define

pred(r̃ ) := max{ f ∈ F : f < r̃ } and succ(r̃ ) := min{ f ∈ F : r̃ < f }. (4)

A floating-point number r̃ is defined to be a faithful rounding of r ∈ R if

pred(r̃ ) < r < succ(r̃ ). (5)

Note that r̃ = r is the only possible faithful rounding if r ∈ F, otherwise there are two candidates.
To prove a faithfully rounded result only depending on the number of operations but indepen-

dent of the structure of the expression, we exploit the notation of the No Inaccurate Cancellation
(NIC) principle. In [4] that was used to identify algorithms computing accurate results basically

independent of the condition number. A famous example is to treat Hilbert matrices as Cauchy

matrices allowing to faithfully compute the inverse up to about dimension 10
8
solely in binary64.

Definition 2.2. Let T be an evaluation tree with input data p and inner nodes comprising of

operations from the set {+, ·, /,
√
}. Suppose that each individual operation satisfies Assumption 1.

If sums, where at least one addend is not input data, are not performed on numbers with opposite

signs, then (T ,p) complies with the No Inaccurate Cancellation (NIC) principle.

Any deterministic instance of an algorithm is representable as an evaluation tree. Therefore

the following results are as well applicable to the broader concept of algorithms. For reasons of

simplicity, we use evaluation trees.

Definition 2.3. Consider an evaluation tree T with input data p ∈ Fn . Let any pair of input

numbers pi and pj that is added in T with negative result be replaced by p ′i := −pi and p
′
j := −pj ,

respectively. Moreover, let all other input numbers pk be replaced by their absolute value p ′k := |pk |.
The so obtained data p ′ is called NIC remodeled input data to (T ,p).

Evidently, for any tree T an instance (T ,p ′) with NIC remodeled input data always complies

with the NIC principle.

Assumption 2. For an evaluation tree T with input data p we henceforth assume that all interme-
diate operations are well defined on the field of real numbers R.
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3 PAIR ARITHMETIC AND PRELIMINARY RESULTS
Our basic pair operations to be analyzed are as follows:

Function (c ,д)← CPairSum((a, e),(b, f ))

c ← fl(a + b)

t ← a + b − c // TwoSum

д← float(t + (e + f ))

Function (c ,д)← CPairProd((a, e),(b, f ))

c ← fl(ab)

t ← ab − c // FMA or TwoProduct

д← float(t + (af + be))

Function (c ,д)← CPairDiv((a, e),(b, f ))

c ← fl(a/b)

t ← a − bc // FMA

д← float(((t + e) − c f )/(b + f ))

Function (c ,д)← CPairSqrt((a, e))

c ← fl(
√
a)

t ← a − c2 // FMA

д← float((t + e)/(c + c))

It is known [2, 16] that, independent of the choice of base β , the residuals a + b − c for the sum,

ab − c for the product, a − bc for the division, and a − c2
for the square root are floating-point

numbers, so that no float(·) is necessary in the lines computing t . The residuals can be computed

correctly using the error-free transformation TwoSum [12]
2
for the sum and fused multiply-and-add

(FMA) for the other operations.

Once more we want to stress that the significant part of our floating-point pairs is identical

to the result of the respective evaluation in base precision. The second term is a floating-point

approximation of the actual error. This leads to the preservation of some beneficial properties.

Lemma 3.1. To a given evaluation tree T consider an instance (T ,p) that satisfies the NIC principle
for the given input data p. Let c be the result evaluated using floating-point arithmetic, and ĉ be the
true result of the expression. Then there exists a positive real factor γ satisfying c = γĉ , i.e., the sign is
preserved.

Proof. We proceed by induction, where for all input data and operations solely on input data the

assertion is obviously true. Henceforth, assume that the statement is true for the child element(s) of

the root r of an evaluation treewith heighth ≥ 3. Following, we consider addition andmultiplication;

the respective arguments for division and square root can be easily adapted.

Let a and b be the results evaluated in the left and right subtree of r , with â and
ˆb denoting the

results computed in real arithmetic, respectively. By the induction hypothesis there exist γa ,γb > 0

satisfying a = γaâ and b = γb ˆb. Choose s ∈ {−1, 1} such that sĉ ≥ 0.

For addition, due to the NIC principle, sĉ ≥ 0 implies sâ, s ˆb, sa, sb ≥ 0. Using (3), we have

ω̄−1
min{γa ,γb }sĉ ≤ ω̄

−1(γasâ + γbs ˆb) = ω̄−1s(a + b) ≤ sc

2
It is known [3] that intermediate overflow may occur although the input and the results are within the floating-point

range. That can be avoided using a branch and FastTwoSum.

4



and

sc ≤ ωs(a + b) ≤ ω(γasâ + γbs ˆb) ≤ ω max{γa ,γb }sĉ .

Hence, there exists γ in the positive interval [ω̄−1
min{γa ,γb }, ω max{γa ,γb }] satisfying c = γĉ .

For multiplication, again choosing s so that sĉ ≥ 0, we have

ω̄−1γaγbsĉ = ω̄
−1sab ≤ sc ≤ ωsab = ωγaγbsĉ,

by which the existence of some feasible γ ∈ [ω̄−1γaγb , ωγaγb ] is evident. □

Lemma 3.2. For an evaluation tree T and input data p, let p ′ be the NIC remodeled input data.
Denote by ĉ and Ĉ the true result of evaluatingT for input data p and p ′, respectively. If (T ,p) complies
with the NIC principle, then |ĉ | = Ĉ .

Proof. Using Definitions 2.2 and 2.3 together with Assumption 2, the statement follows by a

simple induction argument. □

For given r ,δ ∈ R, r̃ = fl(r ) and supposing binary arithmetic, it was shown in [18] that |δ | < u
2
|r̃ |

implies that fl(r ) is a faithful rounding of r + δ . In the following we need another criterion based

on r rather than on r̃ . Moreover, the criterion is extended to general base β .

Lemma 3.3. Let r ,δ ∈ R be given and assume

|δ | ≤
1

β
u|r |. (6)

Then fl(r ) is a faithful rounding of r + δ .

Proof. Without loss of generality, due to the symmetry of F and the trivial case r = 0, we may

assume that r is positive. Let r̃ := fl(r ) and denote by q a second nearest floating-point number to r ,
in the sense that

q , r̃ and ∀f ∈ F \ {r̃ } : |r − q | ≤ |r − f |.

Moreover, let ϱ := |r −
r̃+q

2
| denote the difference between r and the midpoint of r̃ and q. Then

|r − q | ≥ |r − r̃ | =⇒ |r − q | =

���� r̃ + q
2

− q

���� + ����r − r̃ + q

2

���� = |r̃ − q |
2

+ ϱ .

Since the fraction
|r̃−q |
|r̃+q | is minimal if r̃ is a power of β and q its predecessor, we have

|r − q |

r
≥

|r̃−q |
2
+ ϱ

|r̃+q |
2
+ ϱ
≥
|r̃ − q |

|r̃ + q |
≥

2u
β + pred(β)

>
u
β
.

Finally, by |r − q | = min{|r − pred(r̃ )|, |r − succ(r̃ )|}, we validate

pred(r̃ ) ≤ r − |r − q | < r −
u
β
r ≤ r + δ ≤ r +

u
β
r < r + |r − q | ≤ succ(r̃ ),

so that (2.1) completes the proof. □
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4 MAIN RESULTS
In this section we specify criteria ensuring a faithful rounding of the computed floating-point

approximation. For this purpose we first introduce an error estimate that bounds the approximation

error of our pair arithmetic depending on u, the size of the expression, and a quantity related to

the condition.

Definition 4.1. For 0 ≤ k ∈ N, we define

φk := k(ωω̄)ku, and ψk := (k2 + 2k)(ωω̄)ku2. (7)

Let ĉ, Ĉ ∈ R and s ∈ {−1, 1} satisfy Ĉ ≥ |ĉ | = sĉ . We call a pair (c,д) ∈ F × F a k-approximation of

ĉ with respect to Ĉ if

|д | ≤ φkĈ, |ĉ − (c + д)| ≤ ψkĈ, (8)

and Ĉ > |ĉ | implies

|c − ĉ | ≤ (ω̄k − 1)Ĉ, (9a)

whereas Ĉ = |ĉ | requires

ω̄−kĈ ≤ sc ≤ ω̄kĈ . (9b)

If Ĉ = |ĉ |, we also say that (c,д) is a proper k-approximation of ĉ .

Please note that (9b) is stronger than (9a) because

ω̄−kĈ ≤ sc ≤ ω̄kĈ =⇒ (ω̄−k − 1)Ĉ ≤ s(c − ĉ) ≤ (ω̄k − 1)Ĉ =⇒ |c − ĉ | ≤ (ω̄k − 1)Ĉ .

Conversely, (9a) implies the right inequality of (9b) by

sc ≤ |c − ĉ | + sĉ ≤ (ω̄k − 1)Ĉ + Ĉ = ω̄kĈ . (10)

Hence, a k-approximation of ĉ with respect to Ĉ , whether Ĉ > |ĉ | or Ĉ = |ĉ |, always satisfies (9a)
and (10).

On the other hand, it is worth mentioning that the left inequality in (9b) is closely related to

the NIC principle. In particular, this condition comprises the preservation of the sign addressed in

Lemma 3.1. Indeed (9b) is a property of any floating-point result of an NIC conform expression

with up to k operations. This statement will be clear from the proof of Theorem 4.2.

Using the above introduced quantities for the qualification of the approximation error, we may

now state our main results. After providing some auxiliary facts in Subsection 4.1, the proofs are

given in Subsection 4.2.

Theorem 4.2. Let an arithmetic expression be given by an evaluation treeT with n leaves, where to
each inner node j an operation ◦j out of {+, ·, /,

√
} is assigned. Moreover, to every node j, inner node

or leaf, let an integer kj be assigned according to

kj :=



0 if j is leaf
max{kleft(j),kright(j)} + 1 if ◦j = +
kleft(j) + kright(j) + 1 if ◦j = ·
kleft(j) + kright(j) + 2 if ◦j = /
max{kchild(j),min{kchild(j) + 1, 7}} if ◦j =

√
,

(11)

For given input data p ∈ Fn , let (pi , 0) be the pairs at the leaves of T , and denote by (c,д) the result
evaluated at root r using our pair arithmetic. Furthermore, let ĉ be the true result of the expression for
input data p, and let Ĉ be the true result for the NIC remodeled input data p ′.
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Suppose that all denominators and all expressions below a square root comply with the NIC principle.
Furthermore, suppose that kj is not larger than u−

1

2 for any node j comprising of division or square
root. Otherwise kj is unbounded. Then (c,д) is a kr -approximation of ĉ with respect to Ĉ .

Remark 1. Note that if the whole expression (T ,p) complies with the NIC principle, then |ĉ | = Ĉ by
Lemma 3.2, so that the error is bounded by

|ĉ − (c + д)| ≤ ψkr |ĉ |,

independent of a condition number.

Theorem 4.3. Let (c,д) be a k-approximation of ĉ with respect to Ĉ and define

k :=
Ĉ

|ĉ |
with the convention

0

0

:= 1. (12)

If k is restricted via

k ≤
1√
βku

− 2, (13)

then fl(c +д) is a faithful rounding of ĉ . For any expression complying with the NIC principle, condition
(13) reduces to k ≤ (βu)−

1

2 − 2. In particular, for binary64 that means k ≤ 67, 108, 862.

Note that Theorem 4.3 makes no statement for Ĉ > |ĉ | = 0 since a faithfully rounded result cannot

be guaranteed for this case. On the other hand, if the NIC principle is satisfied, then |ĉ | = 0⇔ Ĉ = 0

and always k = 1.

4.1 Auxiliaries
In the following subsection we prove the respective error estimates individually for each operation

defined in Section 3. For this purpose, we first go through some auxiliary facts.

A central role plays the following inequality

∀λ ≥ µ ≥ 0,q ≥ 0, r ≥ 1 : (1 + µ)q(1 + λ)r−1(1 + λ − (q + r )λ) ≤ 1,

which is certainly true if 1 + λ − (q + r )λ ≤ 0, and otherwise it follows by taking the logarithm on

both sides, using µ ≤ λ and three times ln(1 + x) ≤ x for x > −1. In particular, the above inequality

will be used on powers of ω and ω̄. Using the equivalence

(1 + µ)q(1 + λ)r−1(1 + λ − (q + r )λ) ≤ 1 ⇐⇒ (1 + µ)q(1 + λ)r − 1 ≤ (q + r )λ(1 + µ)q(1 + λ)r−1

and setting λ = u, µ = v, we obtain

∀q ≥ 0, r ≥ 1 : ωqω̄r − 1 ≤ (q + r )uωqω̄r−1. (14)

Moreover, setting λ = v, q = 0 and λ = u, q = 0, respectively, we derive

∀r ≥ 1 : ωr − 1 ≤ rvωr−1
and ω̄r − 1 ≤ ruω̄r−1. (15)

In the cases where r ≥ 1 may not be satisfied, we further exploit

∀q ≥ 0 : ω̄q − 1 ≤ quω̄q , (16)

which follows from the equivalence with (1 − qu)(1 + u)q ≤ 1 and a similar argument as above.

In the proofs of Theorem 4.3 and Lemma 4.6, we exploit that for any nonnegative λ and ν
satisfying r ≤ (1 − λν

2
)ν ,

(1 + λ)r ≤ 1 + λν . (17)
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To see that we use that the Taylor series implies x − x 2

2
≤ ln(1+x) ≤ x for nonnegative x , such that

r ln(1 + λ) ≤ rλ ≤

(
1 −

λν

2

)
νλ ≤ ln(1 + λν ).

Finally, by

k ≤ u−
1

2 ,q ≥ 0 =⇒ ω̄q ≤
(
1 + k−2

)q
= exp(q ln(1 + k−2)) ≤ exp(q/k2), (18)

we have a relation that is beneficial in the proof of Lemma 4.7.

4.2 Proofs
For the purpose of introducing our line of argumentation and because it can be proved independently,

we first give the argument for Theorem 4.3.

Proof of Theorem 4.3. We use (17) with λ := βu and ν := (λk)−
1

2 ≥ k + 2, by which

ψk
u2
= (k + 2)k(ωω̄)k ≤ ν (ν − 2)(1 + λ)ν−2 ≤ ν (ν − 2)(1 + λν ) = (ν − 2)(ν + k−1) ≤ ν2 − 2k−1,

such that ψkk ≤ ((βuk)−1 − 2k−1)u2k = (1 − 2βu) uβ < u. Setting r := c + д and δ := ĉ − r yields

|r | = |ĉ − δ | ≥ |ĉ | −ψkĈ = (1 −ψkk)|ĉ | and therefore, using (8),

|δ | = |ĉ − (c + д)| ≤
ψkĈ

(1 −ψkk)|ĉ |
|r | =

ψkk

1 −ψkk
|r | ≤

(1 − 2βu)u/β
1 − u

|r | ≤
u
β
|r |.

Together with Lemma 3.3, this proves the result. □

The proof of Theorem 4.2 requires appropriate statements for each pair operation. The respective

lemmas and their proofs are listed below.

Lemma 4.4. Let (a, e) be a ka-approximation of â with respect to Â, let (b, f ) be a kb -approximation
of ˆb with respect to B̂, and define

k := 1 +max{ka ,kb }, ĉ := â + ˆb, as well as Ĉ :=

{
|â + ˆb | if ka = kb = 0,

Â + B̂ otherwise.

Then the result (c,д) of CPairSum is a k-approximation of ĉ with respect to Ĉ .

Proof. After possible renaming, we assume without loss of generality that ka ≥ kb . If ka = 0,

then CPairSum behaves like TwoSum [12], i.e., the sum is error free. Henceforth we assume ka ≥ 1.

The first error model yields t = a + b − c = a + b − (1 − ε1)(a + b) = ε1(a + b) as well as

д = (1 + ε3)
(
ε1(a + b) + (1 + ε2)(e + f )

)
with |εi | ≤ v.

Using ka ≥ kb , the absolute value of д is therefore bounded by

|д | ≤ (1 + v)v(|a | + |b |) + (1 + v)2(|e | + | f |)

≤ ωv(ω̄ka Â + ω̄kb B̂) + ω2(φka Â + φkb B̂)

≤ ωvω̄kaĈ + ω2φkaĈ ≤ φkĈ .

Moreover, |a + b | ≤ ω̄ka Â + ω̄kb B̂ ≤ ω̄kaĈ and |e + f | ≤ φka Â + φkb B̂ ≤ φkaĈ are used to derive

|t + e + f − д | = |ε3ε1(a + b) + (ε2 + ε3 + ε2ε3)(e + f )| ≤ v2ω̄kaĈ + 2vωφkaĈ ≤ (u
2ω̄ka + 2uφka )Ĉ .

Using the above inequality together with

|ĉ − (a + b + e + f )| ≤ |â − a − e | + | ˆb − b − f | ≤ ψka Â +ψkb B̂ ≤ ψkaĈ,
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we validate

|ĉ − (c + д)| ≤ |ĉ − (a + b + e + f )| + |t + e + f − д | ≤ (k2

a + 2ka + 1 + 2ka)(ωω̄)
kau2Ĉ .

By k = ka + 1, this gives |ĉ − (c + д)| ≤ (k2 + 2k − 2)(ωω̄)k−1u2Ĉ ≤ ψkĈ and proves (8).

Next, we consider (9). Inequality (9a), and thus also (10), follows by

|c − ĉ | = |(1 − ε1)(a − â + b − ˆb) − ε1â − ε1
ˆb |

≤ ω̄(|a − â | + |b − ˆb |) + u|â | + u| ˆb |

≤ ω̄
(
(ω̄k−1 − 1)Â + (ω̄k−1 − 1)B̂

)
+ uÂ + uB̂ = (ω̄k − 1)Ĉ .

Finally, for Ĉ = |ĉ | = sĉ , we have Â + B̂ = sâ + s ˆb, which implies

ω̄−kĈ = ω̄−1(ω̄−k+1Â + ω̄−k+1B̂) ≤ ω̄−1(ω̄−ka Â + ω̄−kb B̂) ≤ ω̄−1(sa + sb) ≤ sc,

validates the left inequality in (9b), and finishes the argument. □

Lemma 4.5. Let (a, e) be a ka-approximation of â with respect to Â, let (b, f ) be a kb -approximation
of ˆb with respect to B̂, and define

k := ka + kb + 1, ĉ := â ˆb, and Ĉ := ÂB̂.

Then the result (c,д) of CPairProd is a k-approximation of ĉ with respect to Ĉ .

Proof. The following argument is mainly based on the first error model yielding ab − c =
ab − (1 − ε1)ab = ε1ab as well as

д = (1 + ε5)
[
ε1ab + (1 + ε4)

(
(1 + ε2)af + (1 + ε3)be

) ]
with |εi | ≤ v.

After possible renaming, we henceforth assume without loss of generality that ka ≥ kb . Define

τ :=

{
0 if kb = 0,

1 otherwise.
(19)

Taking into account that kb = 0 =⇒ f = 0 = ε2 = ε4, the error term д is bounded via

|д | ≤ ωv|ab | + ωτ+2(|af | + |be |)

≤ ωvω̄ka Âω̄kb B̂ + ωkb+2(ω̄kaφkb + ω̄
kbφka )ÂB̂

≤

[
(ωω̄)ka+kb+1u + (ωω̄)ka+1φkb + (ωω̄)

kb+1φka

]
Ĉ = φkĈ .

By (9a), (8), (16), and (10), we derive

|â ˆb − (ab + af + be)| = |(â − a)( ˆb − b) + a( ˆb − b − f ) + b(â − a − e)|

≤ (ω̄ka − 1)Â(ω̄kb − 1)B̂ + |a |ψkb B̂ + |b |ψka Â

≤ kauω̄ka Âkbuω̄kb B̂ + ω̄ka Âψkb B̂ + ω̄
kb B̂ψka Â

≤
(
kakb + k

2

b + 2kb + k
2

a + 2ka
)
(ωω̄)ku2Ĉ .

Moreover, using (15), we obtain

|д − (ε1ab + af + be)| ≤ (ω − 1)v|ab | + (ωτ+2 − 1)(|af | + |be |)

≤ v2ω̄ka Âω̄kb B̂ + (τ + 2)vωτ+1
(
ω̄kaφkb + ω̄

kbφka
)
ÂB̂

≤
(
1 + (τ + 2)(kb + ka)

)
(ωω̄)ku2Ĉ .

9



Adding the above expressions and using

τ (ka + kb ) − kakb − 1 ≤ τ (ka + kb ) − kakb − τ
2 = (ka − τ )(τ − kb ) ≤ 0

yield

|ĉ − (c + д)| ≤ |â ˆb − (ab + af + be)| + |ab − c + af + be − д |

≤
(
kakb + k

2

b + 2kb + k
2

a + 2ka + 1 + (τ + 2)(kb + ka)
)
(ωω̄)ku2Ĉ

=
(
k2 + 2k + τ (ka + kb ) − kakb − 2

)
(ωω̄)ku2Ĉ ≤ ψkĈ,

which finishes the argument for (8).

Now (9a) follows by (10) and

|c − ĉ | =
��(1 − ε1)

(
(a − â)b + â(b − ˆb)

)
− ε1â ˆb

��
≤ ω̄

(
(ω̄ka − 1)Âω̄kb B̂ + Â(ω̄kb − 1)B̂

)
+ uÂB̂

= ω̄
(
(ω̄ka ω̄kb − 1)ÂB̂

)
+ uÂB̂ = (ω̄k − 1)Ĉ .

Finally, if Ĉ = |ĉ | = sĉ , then Â = |â | = saâ and B̂ = | ˆb | = sb ˆb with s = sasb , so that (9b) and (3) yield

ω̄−kĈ = ω̄−1ω̄−ka Âω̄−kb B̂ ≤ ω̄−1saasbb ≤ sc ≤ ω̄saasbb ≤ ω̄ω̄
ka Âω̄kb B̂ = ω̄kĈ,

which completes the proof. □

Lemma 4.6. Let (a, e) be a ka-approximation of â with respect to Â, let (b, f ) be a proper kb -
approximation of ˆb, and define

k := ka + kb + 2, ĉ :=
â

ˆb
, and Ĉ :=

Â

| ˆb |
.

If k ≤ u−
1

2 , then the result (c,д) of CPairDiv is a k-approximation of ĉ with respect to Ĉ .

Proof. The first standard model yields c = (1 − ε1)
a
b , and, using t = a − bc = ε1a ∈ F,

д = (1 + ε6)
(1 + ε5)

(
(1 + ε2)(ε1a + e) − (1 + ε3)c f

)
(1 + ε4)(b + f )

with |εi | ≤ v.

The restriction kb ≤ k − 2 ≤ u−
1

2 − 2, the definition (7) ofψk , and ωω̄ = 1 + 2u imply

ψkb ≤ (k
2

b + 2kb )(1 + 2u)kbu2 ≤ (u−1 − 2u−
1

2 )(1 + 2u)1/
√
u−2u2.

By (17) with λ = 2u, ν = u−
1

2 and r = ν − 2, we see

ψkb ≤ (u
−1 − 2u−

1

2 )(1 + 2u
1

2 )u2 = u − 4u2 ≤ v.

Once more defining τ as in (19), we conclude

|b + f | ≥ | ˆb | − |b + f − ˆb | ≥ (1 −ψkb )|
ˆb | ≥ (1 − τv)| ˆb | = ω̄−τ | ˆb |. (20)

Another consequence of (17) with λ = u,ν = u−1/2
, and r = ν − 1 is

ωω̄kb ≤ ω̄kb+1 ≤ (1 + u)1/
√
u−1 ≤ 1 + u

1

2 =
1 −
√
u − u − u

√
u − 2u2

ω̄(1 − 2

√
u)

≤
u−

1

2 − 1

ω̄(u−
1

2 − 2)
≤

kb + 1

ω̄kb
.

Together with the conditions (8) and (9b) for
ˆb, this implies

|c f | ≤ ω
|a | | f |

|b |
≤ ω
|a |φkb |

ˆb |

ω̄−kb | ˆb |
= ωω̄kbkb (ωω̄)

kbu|a | ≤
kb + 1

ω̄
(ωω̄)kbu|a |. (21)

10



We use (20) and (21) to derive

|ε1a | + |e | + |c f |

|b + f |
≤

v|a | + φka Â +
kb+1

ω̄ (ωω̄)
kbu|a |

ω̄−τ | ˆb |

≤

(
ω̄τ vω̄ka + ω̄τka(ωω̄)

kau + (kb + 1)(ωω̄)kbuω̄ka
) Â

| ˆb |

≤ (1 + ka + kb + 1)(ωω̄)ka+kbuĈ = k(ωω̄)k−2uĈ,

so that

|д | ≤ ω3ω̄
|ε1a | + |e | + |c f |

|b + f |
≤ ω3ω̄k(ωω̄)k−2uĈ ≤ k(ωω̄)kuĈ = φkĈ

and, using (14),����д − a − bc − c f + e

b + f

���� ≤ (ω3ω̄ − 1)
|ε1a | + |e | + |c f |

|b + f |
≤ 4ω3uk(ωω̄)k−2uĈ ≤ 4k(ωω̄)ku2Ĉ .

Moreover, we exploit (20), to validate���� â
ˆb
−

a + e

b + f

���� = ����� â − a − eb + f
+
(b + f − ˆb)â

(b + f ) ˆb

����� ≤ ψka Â

ω̄−1 | ˆb |
+
ψkb |

ˆb | |â |

ω̄−1 | ˆb |2
≤ ω̄(ψka +ψkb )Ĉ .

Then, adding these two expressions yields

|ĉ − (c + д)| ≤

���� â
ˆb
−

a + e

b + f

���� + ����a − bc − c f + eb + f
− д

����
≤ (k2

a + 2ka + k
2

b + 2kb )(ωω̄)
ku2Ĉ + 4k(ωω̄)ku2Ĉ

=
(
k2 + 2k − 2kakb

)
(ωω̄)ku2Ĉ ≤ ψkĈ,

which completes the argument for (8).

Once more using the inequalities ω̄−kb | ˆb | ≤ |b | ≤ ω̄kb | ˆb | due to (9b), we derive

|c − ĉ | =

����� (1 − ε1)(a − â)

b
−
ε1â

b
+
( ˆb − b)â

b ˆb

�����
≤
ω̄(ω̄ka − 1)Â

ω̄−kb | ˆb |
+

u|â |

ω̄−kb | ˆb |
+

����� ˆb − b

b

����� Ĉ
≤
ω̄(ω̄ka − 1)Â

ω̄−kb | ˆb |
+

uÂ

ω̄−kb | ˆb |
+

1 − ω̄−kb

ω̄−kb
Ĉ = (ω̄k−1 − 1)Ĉ

and validate (9a). If Ĉ = |ĉ | = sĉ and B̂ = | ˆb | = sb ˆb, then Â = |â | = sbsâ, so that (9b) is satisfied for

a and b. Using (3), we conclude

Ĉ = |ĉ | =⇒ ω̄−k+1Ĉ = ω̄−1
ω̄−ka Â

ω̄kb B̂
≤ ω̄−1

sbsa

sbb
≤ sc ≤ ω̄

sbsa

sbb
≤ ω̄

ω̄ka Â

ω̄−kb B̂
= ω̄k−1Ĉ

and finish the proof. □

Lemma 4.7. Let (a, e) be a proper ka-approximation of â, and define

ĉ :=
√
â and k :=

{
ka + 1 if ka ≤ 6,

ka otherwise.

If k ≤ u−
1

2 , then the result (c,д) of CPairSqrt is a proper k-approximation of ĉ .
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Proof. In the following we exploit the nonnegativity of â and ĉ due to Assumption 2, by which

Ĉ = ĉ and Â = â. The first standard model yields c = (1 + ε1)
√
a and

д = (1 + ε4)
(1 + ε2)(a − c

2 + e)

(1 + ε3)
(
(1 + ε1)

√
a + c

) = (1 + ε4)(1 + ε2)

1 + ε3

2 + ε1

2 + 2ε1

a − c2 + e
√
a + c

(22)

with |εi | ≤ v, where ε3 = 0 for base β = 2. The inequalities

ω̄−
ka
2 ĉ ≤

√
a ≤ ω̄

ka
2 ĉ and ω̄−1

√
a ≤ c ≤ ω̄

√
a (23)

derived from (9b) and (3), respectively, as well as

1 + ω̄−1 = 2 − v ≥ 2

√
1 − v = 2ω̄−

1

2 (24)

are useful in the following argument. By
a−c2

√
a+c = −ε1

√
a, |e | ≤ φka â, and (23), we have����a − c2 + e

√
a + c

���� ≤ v
√
a +

φka â
√
a + c

≤ v
√
a +

φka â

(1 + ω̄−1)
√
a
≤

(
vω̄

ka
2 +

φka
2

ω̄
ka+1

2

)
ĉ . (25)

Moreover, defining

τ :=

{
0 if ka = 0,

1 otherwise,

and using ka = 0 =⇒ ε2 = 0 as well as
2−v
2−2v = 1 + u

2
≤ ω̄ω−

1

2 and
1+v
1−v = ωω̄, we derive���� (1 + ε4)(1 + ε2)

1 + ε3

2 + ε1

2 + 2ε1

− 1

���� ≤ (1 + v)|1 + ε2 |

1 − v
2 − v
2 − 2v

− 1 ≤ ωτ+ 1

2 ω̄2 − 1, (26)

such that, using (22), (26), and (25),

|д | ≤ ωτ+ 1

2 ω̄2

(
vω̄

ka
2 +

φka
2

ω̄
ka+1

2

)
ĉ ≤

(
ωτ+ 1

2 ω̄
ka+2

2 u +
φka

2

ω̄
ka+4

2 (ωω̄)
)
ĉ . (27)

Hence, |д | ≤ φk ĉ follows immediately for ka = 0 = φka . On the other hand, for 1 ≤ ka ≤ 6 we have

k = ka + 1, so that (18) yields ω̄
ka+4

2 ≤ exp(
ka+4

2(ka+1)2
) ≤ 2, and (27) validates |д | ≤ φka+1ĉ again. For

ka ≥ 7, where k = ka , we adapt (27) and once more exploit (18) to obtain

|д | ≤
(
ω

3

2 ω̄
ka+2

2 u +
φka

2

ω̄
ka+8

2

)
ĉ ≤

(
1 +

ka
2

exp

(ka + 8

2k2

a

))
(ωω̄)kauĉ .

It is then easy to check that for ka = 7 the right-hand side is smaller than φka ĉ . By the monotonicity

of the exponential term, we conclude |д | ≤ φka ĉ for all ka ≥ 7. This finishes the proof of the left

inequality |д | ≤ φk ĉ in (8).

The argument for |ĉ − (c + д)| ≤ ψk ĉ is similar. The assumptions imply that the maximum

M(
√
a, c) of

���ĉ − â+
√
ac

√
a+c

��� is assumed at both the left or right bounds on

√
a and c according to (23),

respectively. By (23), â = ĉ2
, (16), and (15), we derive that both values ofM(

√
a, c) are equal and����ĉ − â +

√
ac

√
a + c

���� ≤ �����ĉ − â + ω̄−
ka
2 ĉ ω̄−

ka+2

2 ĉ

ω̄−
ka
2 ĉ + ω̄−

ka+2

2 ĉ

����� =
�����ĉ − â + ω̄

ka
2 ĉ ω̄

ka+2

2 ĉ

ω̄
ka
2 ĉ + ω̄

ka+2

2 ĉ

�����
=

(
ω̄

ka
2 − 1

) (
ω̄

ka+2

2 − 1

)
ω̄

ka
2 + ω̄

ka+2

2

ĉ

≤

ka
2
ω̄

ka
2 uka+2

2
ω̄

ka
2 u

ω̄
ka
2 + ω̄

ka+2

2

ĉ =
k2

a + 2ka
4(ω̄−1 + 1)

ω̄
ka−2

2 u2ĉ .
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Using (23), (24), (26), (14), and (25) yields

|ĉ − (c + д)| =

����( â − a − e√
a + c

)
+

(
ĉ −

â +
√
ac

√
a + c

)
+

(
a − c2 + e
√
a + c

− д

)����
≤

ψka â

(1 + ω̄−1)
√
a
+

k2

a + 2ka
4(1 + ω̄−1)

ω̄
ka−2

2 u2ĉ +
(
ωτ+ 1

2 ω̄2 − 1

) ����a − c2 + e
√
a + c

����
≤

(
ψka

2

+
k2

a + 2ka
8ω̄

u2

)
ω̄

ka+1

2 ĉ +
2τ + 5

2

ωτ+ 1

2 ω̄u
(
vω̄

ka
2 +

φka
2

ω̄
ka+1

2

)
ĉ

≤

(
5

8

ω̄
ka−1

2 k2

a + 3ω̄
ka+2

2 ka +
2τ + 5

2

(ωω̄)−τ
)
(ωω̄)ka+1u2ĉ .

For ka = 0 = τ the inequality |ĉ − (c + д)| ≤ ψka+1ĉ = ψk ĉ is evident, and for ka ∈ {1, 2}, using
u ≤ k−2 ≤ 1

4
, the validity of the same is straightforward to check. Moreover, using (18) with ka ≤ k ,

we derive

|ĉ − (c + д)| ≤

(
5

8

exp

(ka − 1

2k2

a

)
k2

a + 3 exp

(ka + 2

2k2

a

)
ka +

7

2

)
(ωω̄)ka+1u2ĉ . (28)

Hence, |ĉ − (c + д)| ≤ ψka+1ĉ is satisfied for ka = 3, and by monotonicity of the exponential terms

also for all ka > 3. This leaves us with the case ka ≥ 7 where k = ka . If we replace (ωω̄)
ka+1

in (28)

with (ωω̄)ka by exploiting ωω̄ ≤ exp( 2

k2

a
), we obtain

|ĉ − (c + д)| ≤

(
5

8

exp

(ka + 3

2k2

a

)
k2

a + 3 exp

(ka + 6

2k2

a

)
ka +

7

2

exp

(
2

k2

a

))
(ωω̄)kau2ĉ .

Now, in the same manner as above, |ĉ − (c + д)| ≤ ψka ĉ = ψk ĉ for all ka ≥ 7.

Finally, the inequalities in (9b) follow, using (23), by

ω̄−k ĉ ≤ ω̄−1ω̄−
ka
2 ĉ ≤ ω̄−1

√
a ≤ c ≤ ω̄

√
a ≤ ω̄ω̄

ka
2 ĉ ≤ ω̄k ĉ,

which completes the proof. □

Proof of Theorem 4.2. Evidently, the input pairs (pi , 0) are proper 0-approximations of pi , and
the definition of kj in (11) is consistent with the definitions of k in the Lemmas 4.4–4.7.

Thus, if the input pairs at some inner node j are proper kleft(j)- and kright(j)-approximations of the

true results âj and ˆbj , respectively, then the result (c j ,дj ) of our pair arithmetic for multiplication,

division, and square root is a proper kj -approximation of the true result ĉ j , where kj is defined
according to the rules in the respective lemmas. Only addition demands special attention. If the

real summands âj and ˆbj satisfy âj ˆbj ≥ 0, then Âj = |âj |, B̂j = | ˆbj | implies Ĉj = |ĉ j |. On the other

hand, due to the NIC principle, different signs are only permitted if both addends are input data.

In that case kleft(j) = kright(j) = 0 and Ĉj = |â + ˆb | = |ĉ | by definition. Hence, for each node j in the

right subtree of a divisor or below a square root, (c j ,дj ) is a proper kj -approximation of ĉ j .
We may therefore replace the nodes comprising of division or square root by leaves containing

the respective kj -approximations. The remaining tree entails only summation and multiplication,

so that there is no limit on the quantities kj assigned to the remaining nodes. By Definition 2.3,

every intermediate result of the expression described via (T ,p ′) is nonnegative, such that each

operation is consistent with the definition of Ĉ in Lemma 4.4 and Lemma 4.5, respectively. The

statement in Theorem 4.2 follows. □
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5 APPLICATIONS AND CONCLUSION
We first comment on possible extensions. Our pair arithmetic covers the four basic operations

and the square root. We may ask whether other function could be added in a similar manner,

for example, the square of a floating-point number. Of course, that is covered by multiplication;

however, the function square may allow for better estimates. Whilst a simpler implementation

of CPairSquare derives from CPairProd in the obvious way, the error estimates and in particular

the value of k derived from ka does not improve. Indeed, (a + e)2 = a2 + 2 ∗ e ∗ a + e2
implies

φk â
2 ≈ 2φka â

2
, so that k must be at least of the order 2ka . Together with the inevitable rounding

errors, we obtain k = 2ka + 1, the same as for CPairProd.

For other functions f (a) the first problem is to obtain c = fl(f (a)). Even ignoring the table

maker’s dilemma [16], the second problem is to compute the residual c − f (a) together with an

error bound. In principle, that is possible using some Taylor series expansion, however, with the

current IEEE 754 standard [10] it is at least not as simple as for the four basic operations and the

square root.

Before addressing possible applications, we want to recall that increasing the precision of each

individual computation does not necessarily mean to increase the accuracy of the result. This is

true for the double-double format as well as for our proposed floating-point arithmetic with error

term. Exemplary, let u = 2
−53

be the relative rounding error unit of IEEE 754 binary64, and consider

the expression

t = ((((1 + u) + u2) − u) − u2) − 1.

Note that all quantities involved are representable in binary32. Obviously t = 0, the same as

computed in binary32. However, binary64 produces t = −u, whereas our pair arithmetic or double-

double in binary64 yields t = −u2
. Multiplying the result by some number does not change the

correct binary32 value, but produces an arbitrarily large error for binary64, double-double, or our

pair arithmetic.

As has been mentioned in the introduction, algorithms for computing faithfully rounded results

have been introduced for some specific problems such as powers or products of floating-point

numbers [6], Horner’s scheme [5], summation and dot product [17], or the Euclidean norm of a

vector [7]. Similar estimates are an immediate consequence of our main results. Throughout this

last section, we assume that no underflow error or overflow occurs, ensuring that the error model

(2) is satisfied.

Corollary 5.1. For given x ∈ Fn denote by (c,д) the product of all xi computed by our pair
arithmetic in any order. If n ≤ (βu)−

1

2 − 1, then fl(c + д) is a faithful rounding of
∏n

i=1
xi .

The proof reduces to counting the number n − 1 of operations and applying Theorem 4.2, where

k = n − 1. In [6] a compensated algorithm is discussed, very similar to our pair arithmetic. Both

approaches require the same number of floating-point operations. In [6] it is proved that a faithfully

rounded result is computed in IEEE754 binary32 or binary64 provided that

n <

√
1 − u

√
4 + 2u + 2

√
(1 − u)u

u−1/2.

A computation shows that, apart from a factor

√
2, both bounds for n are roughly the same. However,

our result is applicable for any base β and any order of evaluation. The latter, for instance, allows

to vectorize the operations for faster computations via SIMD instructions.
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Corollary 5.2. Let a polynomial p(x) :=
∑n

i=0
pix

i with p0, . . . ,pn ∈ F and x ∈ F be given, and
denote by (c,д) the evaluation of p(x) by our pair arithmetic using Horner’s scheme. If

n ≤
1

2

√
βku

− 1 for k :=

∑n
i=0
|pi | |x

i |

|
∑n

i=0
pix i |

,

then fl(c + д) is a faithful rounding of p(x).

Here k reflects the condition number of the evaluation of p at x . Note that Ĉ =
∑n

i=0
|pi | |x

i |.

Evaluation by Horner’s scheme requires 2n operations, and Theorems 4.2 and 4.3 show the result.

In [5] Graillat uses compensated floating-point operations, similar to our pair arithmetic. He

shows that in binary arithmetic his computed result is faithfully rounded provided that

k <
(1 − u)(1 − 2nu)2

4n2u(2 + u)
.

A calculation reveals that both conditions are almost identical.

When evaluating a polynomial by Horner’s scheme, the error bound necessarily involves the

condition number k of evaluation. That is not necessary if the polynomial is given by its roots.

If the polynomial has real coefficients, the roots are real or conjugate complex. In that case our

pair arithmetic is applicable and the NIC principle is satisfied. That is clear for factors x − ri where

x , ri ∈ F. On the other hand, for complex roots s ± t
√
−1 the factor becomes (x − s)2 + t2

, satisfying

the NIC principle as well.

The calculation of k in Theorem 4.2 is as follows. Let p real and q complex roots be given, such

that n = p + 2q. The trees for each x − ri are assigned by k1 = 1, whereas the trees for (x − s)2 + t2

yield k2 = 4, in total k = pk1 + qk2 + p + q − 1 = 2p + 5q − 1 ≤ 5

2
n − 1. Adding one to multiply

by the leading coefficient, polynomial evaluation by its roots is faithful by our pair arithmetic for

polynomial degrees up to n ≤ 2

5
(βu)−

1

2 − 4

5
. In binary64 that means n ≤ 26, 843, 544.

That example can be extended to polynomial interpolation. Let p ∈ R[x] be the polynomial

of degree n satisfying p(xi ) = yi for i ∈ {1, . . . ,n}, where we assume that the corresponding

Vandermonde matrix is regular. Then the polynomial value at some x ∈ R satisfies

p(x) =
n∑
i=0

∏
j,i x − x j∏
j,i xi − x j

yi =:

n∑
i=0

Θi (x)yi . (29)

All denominators of that expression comply with the NIC principle, thus Theorem 4.2 is applicable.

Each of the n+ 1 summands in (29) consists of 2n subtractions, 2n− 1 multiplications, and 1 division.

Thus, at a node j representing one of these summands, we have kj = 4n + 1. In the worst case,

where the sum is evaluated recursively, the final value computes to k = 5n + 1, so that a faithfully

rounded result is guaranteed if n ≤ 1

5
(βku)−

1

2 − 3

5
, where k :=

∑n
i=0
|Θi (x)yi |/|p(x)|.

We note that in practice it may be more beneficial to use

R :=

n∏
j=0

x − x j , p(x) =
n∑
i=0

R

(x − xi )
∏

j,i xi − x j
yi ,

where the factors

∏
j,i xi − x j may be evaluated beforehand to ensure an efficient evaluation of

multiple polynomial values. Then Theorem 4.2 is applicable as well with adapted constants.

Corollary 5.3. For given x ∈ Fn denote by (c,д) the sum of the xi computed by our pair arithmetic
in any order. If

n ≤
1√
βku

− 1 for k :=

∑n
i=1
|xi |

|
∑n

i=1
xi |
,
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then fl(c + д) is a faithful rounding of
∑n

i=1
xi . If binary summation is applied, the same is true if

⌈log
2
(n)⌉ ≤ (βku)−

1

2 − 2.

Here, for any order of summation, the k in Theorem 4.2 is bounded by n − 1, whereas bounded

by ⌈log
2
(n)⌉ + 1 in case of binary summation. This implies the result.

In [17] a summation based on error-free transformations is given. It is shown that a pair (c,д) is
computed with ����� n∑

i=1

xi − (c + д)

����� ≤ γn−2γn−1

n∑
i=1

|xi |,

where γk := ku
1−ku [16], as usual, implicitly assumes ku < 1. Hence Lemma 3.3 implies that fl(c + д)

is a faithful rounding of the true sum if

(n − 2)(n − 1)

(1 − (n − 2)u)(1 − (n − 1)u)
≤

1

βku
,

which is very similar to our result for recursive summation. In [17], however, the estimate was

proved only for recursive summation and base β = 2.

Corollary 5.4. For given x ,y ∈ Fn denote by (c,д) the dot product xTy computed by our pair
arithmetic, where summation may be performed in any order. If

n ≤
1√
βku

− 2 for k :=
|x |T |y |

|xTy |
, (30)

then fl(c + д) is a faithful rounding of xTy. If binary summation is applied, the same is true if
⌈log

2
(n)⌉ ≤ (βku)−

1

2 − 3.

The dot product is computed by a summation tree where each leaf becomes a product node. Thus,

the maximal height of the dot product tree is n, and the result follows. The result in [17] mentioned

above can be applied to the sum of ai + ei := xiyi computed by the error-free transformation

TwoProduct. However, without further investigation that increases the number of summands to 2n,
so that the bound on n becomes roughly half of that in (30).

To compute faithful results for problems involving a Hilbert matrix, it is treated as a Cauchy

matrix with Hi j = Ci j = (xi + yj )
−1

for x = (1, . . . ,n) and y = (0, . . . ,n − 1). Then evaluating

Gaussian elimination steps by

Ci j = Ci j −
CikCk j

Cii
= Ci j

(xi − xk )(yj − yk )

(xk + yj )(xi + yk )

satisfies the NIC-principle. Similar concepts apply to the orientation problem [19] and Householder

transformations with the "usual" choice of sign [8].

Corollary 5.5. For given x ∈ Fn denote by (c,д) the Euclidean norm ∥x ∥2 computed by our pair
arithmetic. If n ≤ (βu)−

1

2 − 3, then fl(c +д) is a faithful rounding of ∥x ∥2. In case of binary summation,
the same is true if ⌈log

2
(n)⌉ ≤ (βu)−

1

2 − 4.

Note that Theorem 4.2 is applicable because the NIC-principle is satisfied. The height of the

summation tree is at most n, so that including the last operation square root the k in Theorem 4.2

is bounded by n + 1 for any order of summation, and by ⌈log
2
(n)⌉ + 2 in case of binary summation.

This implies the result. For binary summation in IEEE754 binary64 the maximal vector length for

our pair arithmetic to produce a faithfully rounded result is about 2
2

26

.

In [7] double-double arithmetic is used to compute ∥x ∥2 with recursive summation, adapted

to the fact that the summands are nonnegative. That requires 13n + 1 floating-point operations
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as compared to 10n + 1 for our pair arithmetic when using TwoProduct rather than CPairProd.

However, in [7] up to a considerably larger maximum vector length n < 1

24u+u2
− 3 a faithfully

rounded result is guaranteed.

That is a principal trade-off: Faithful rounding is ensured for largern at the cost of more operations.

By carefully going through our estimates it becomes clear that including the normalization step of

double-double arithmetic into our pair arithmetic ensures faithful rounding up to n close to u−1
,

however, adding 3 operations to each of our pair operations.

One may argue that our limit (βu)−
1

2 for k is less than 3000 in binary32. However, in order to

compute a more accurate result it seems more efficient to use binary64 rather than a pair arithmetic

based on binary32. In fact, applying our pair arithmetic seems useful for the most precise and easily

accessible floating-point format, which is often binary64. In that case the limit (βu)−
1

2 = 2
26
for k

seems large enough for many applications. Therefore, we opted for faster operations rather than

for a larger limit of k .
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