
Analysis of Optical Isolation Based on Nonreciprocal Raman
Scattering in Photonic-Crystal Silicon Waveguides

Michael Krause, Sascha Meyne, Hagen Renner and Ernst Brinkmeyer
Technische Universität Hamburg-Harburg, Optische Kommunikationstechnik, D–21073 Hamburg, Germany

It has been shown both theoretically and experimen-
tally that stimulated Raman scattering (SRS) in silicon
photonic wires exhibits nonreciprocal behavior: the gain
seen by a signal counterpropagating with respect to the
pump wave can be much larger than the gain in copropa-
gation at the same pump power. Counter/co gain ratios
of up to 340 have been predicted, depending on the wave-
guide orientation on the substrate [1, 2]. Thus SRS lends
itself to the realization of optical isolators [3].

In photonic-crystal waveguides (PhCWGs), SRS is ex-
pected to be enhanced due to the slow-light effect. Pre-
liminary investigations indeed predict much potential
for the improvement of silicon Raman amplifiers [4–7].
However, an investigation of the SRS nonreciprocity in
PhCWGs is lacking so far. It is the focus of this paper.

We illustrate the principle using the 2D PhCWG from
[8]. We scale it such that the operating wavelength range
is in the mid-IR where the usual models reduce to the
consideration of only two effects: SRS and linear modal
attenuation α. A fictitious waveguide thickness of 0.5µm
is assumed along the invariant structural dimension for
the purpose of defining tangible optical powers.
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Fig. 1. (a) Signal group velocity and Raman gain in dB per
mm distance and mW local pump power, vs. signal wavelength
(pump implicitly offset by 15.6 THz). (b) Raman nonreciprocity
(counter/co gain ratio).

The dotted curve in Fig. 1a shows the group veloc-
ity of the signal in the PhCWG vs. wavelength. The
solid and dashed curves represent the modal Raman-gain
coefficients Γ for co- and counter-propagation, respec-
tively (a bulk Raman-gain constant of 10 cm/GW was
assumed). There are two pairs of curves, correspond-
ing to two different orientations of the waveguide with
respect to the crystallographic axes. In either case, a
strong increase of the modal gain towards larger wave-
lengths is clearly visible, corresponding to the slow-light
region of the PhCWG [8]. Most importantly, the co- and
counter-gains differ significantly; their ratio is shown in
Fig. 1b. This nonreciprocity reaches values of 1.6 for the
〈011〉 waveguide orientation (comparable to the nonre-
ciprocity in photonic wires [3]), and even up to 5.1 for
the 〈001〉 orientation.

We now model the performance of an MZI-based opti-
cal isolator [3], now based on the PhCWGs just analyzed.
A schematic is shown in Fig. 2. Fig. 3 shows optimization
results for the 〈011〉 waveguide orientation. The thick
curves correspond to a simple model where the linear
modal attenuation α is assumed wavelength-independent
(1.0 dB/cm), and the modal co- and counter-propagating
gains scale according to Fig. 1a. Pump powers PA and
PB are needed for the two MZI arms; to realize an
“ideal” isolator with complete backward isolation and a
forward transmission of 0 dB, the powers must be chosen
as shown in Fig. 3 (solid and dashed). In the slow-light
region, they are on the order of merely 10 mW, while the
required PhCWG lengths (dotted) approach 10 cm.

Raman Pump PB

3dB

Raman Pump PA

3dB

GB
+

GB
-

GA
+

GA
-

(Raman gains)

21

Fig. 2. Mach-Zehnder-based Raman-pumped optical isolator [3].

The picture changes when we assume that the modal
attenuation α increases linearly with the slowdown factor
[9]. In that case the thin curves in Fig. 3 apply. The
required pump powers no longer decrease as strongly in
the slow-light region, instead the PhCWGs may be made
much shorter, less than 20 mm now.
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Fig. 3. Thick: optimized isolators for wavelength-independent α.
Solid (PA) and dashed (PB) are pump powers required for for-
ward IL = 0 dB; dotted are corresponding MZI lengths. Thin:
corresponding result for group-velocity-dependent α.

In conclusion, we have found that the use of PhCWGs
instead of photonic wires in Raman-based optical isola-
tors has the advantage of either reduced pump powers or
shorter lengths, depending on the attenuation behavior.
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