10.06.2024

Presentation Series: Train Your Engineering Network. Marcus Venzke.

Image generated by DALL·E 3, using Microsoft Copilot Image Creator.

Unsupervised Learning of Threshold Trees for Sensor-Based Indoor Positioning on Microcontrollers

Abstract

The talk presents a new technique for unsupervised learning of repeatedly occurring process states from a suite of time series derived from preprocessed sensor data recorded from a fixed process. As a first application we consider the process of moving a good along a path in an industrial environment. The goal is to identify individual sections of the path while they are being traversed. The technique determines thresholds in time series leading to the same succession of increasing and decreasing intersections for all paths of the training data. The trained model is a so-called “threshold tree”. It consists of thresholds for the different time series splitting a path into its sections to be recognized. The execution of threshold trees has a low CPU and memory footprint allowing their use on micro-controllers, e.g. in embedded systems. Due to their intuitive comprehensibility "threshold trees" belong to the category of explainable AI.

Talk in the series “Train Your Engineering Network”.