Peer-reviewed journal papers

Articles in review

  1. Aminzadeh, M., Kokate, T., Sahimi, M., Shokri, N. (2024). Microplastics in Soil: Alterations in Thermal Conductivity, Surface Albedo, and Soil Temperature (in review)

  2. Afshar, M.H., Hassani, A., Aminzadeh, M., Borrelli, P., Panagos, P., Robinson, D.A., Or, D., Shokri, N. (2024). Quantifying Soil Degradation Trends in Europe: An AI Derived Soil Vulnerability Index (in review)

  3. Huning, L.S., Bateni, S.M., Hayes, M., […], Shokri, N., […], AghaKouchak, A. (2024). Sustainability Nexus Analytics, Informatics, and Data (AID): Drought (in review)

  4. Kouyaté, F., Aminzadeh, M., Guédjé, F.K., Madani, K., Shokri, N. (2024). Harnessing Satellite Data and Machine Learning Models to Predict Water Level Fluctuation of Rivers: The Case of Bani River in Africa (in review)

  5. Sobhi Gollo, V., Or, D., Shokri, N. (2024). Land use change and its impact on nutrient balance and carbon footprint: A regional perspective (in review)

  6. Jannesarahmadi, S., Milad Aminzadeh, M., Sahimi, M., Helmig, R., Or, D., Shokri, N. (2024). Quantifying Salt Crystallization Impact on Evaporation Dynamics in Porous Media and Surface Energy Balance (in review)

  7. Joharinad, B., Aminzadeh, M., Usman, C.A., Rabbani, H., Karpuzcu, M.E., Shokri, N. (2024). Effects of microplastics on soil physical properties (in review)

  8. Sepehrnia, N., Abbasi Teshnizi, F., Hallett, P., Coyne, M., Shokri, N., Peth, S. (2024). Modeling Cascading Consequences: Exploring How Soil Water Repellency Dynamics Affect Bacterial Transport and Fate (in review)

  9. Sobhi Gollo, V., Schmidt, B.B., Hansen, C., Shokri, N. (2024). Revitalizing Water Resources: Sustainable Restoration of Low-Quality Groundwater through Aquifer Storage and Recovery (in review)

  10. Nevermann, H., Aminzadeh, M., Madani, K., Shokri, N. (2024). A global perspective on dam reservoir evaporation with water management implication in water-stressed regions (in review)

  11. Nevermann, H., Madani, K., Shokri, N. (2024). Fighting over water while losing it through evaporation: The Case of Iran-Afghanistan (in review)

  12. Shokri, N., Aminzadeh, M., Flury, M., Jin, Y., Matin, M., Panagos, P., Razavi, B.S., Robinson, D.A., Smith, P., Todd-Brown, K., Toth, G., Zarei, A., Madani, K. (2024), Sustainability Nexus AID: Soil Health (in review)

  13. Shokri, N., Hassani, A.H., Sahimi, M., (2024), Soil Salinization from Pore to Global Scale: Mechanisms, Recent Advances and Future Outlook, Reviews of Geophysics (in review)

  14. Hanf, F.S., Ament, F., Boettcher, M., […], Shokri, N., Sillmann, J., Vogelbacher, A., von Szombathely, M., Wickel, M. (2024), Towards a socio-ecological system understanding of urban flood risk under climate change: Barriers to adaptation in cities (in review)

  15. Bakhshian, S., Zarepakzad, N., Nevermann, H., Hohenegger, C., Or, D., Shokri, N. (2024). Field-Scale Soil Moisture Dynamics Predicted By Deep Learning (in review)

Published articles

  1. Shah, T.M., Jannesarahmadi, S, Shokri-Kuehni, S., Ellinger, D, Brose, A., Or, D., Shokri, N. (2024). Research-based learning as an innovative approach for teaching students of environmental engineering: A case study of the emerging field of microplastics in soil, Discov. Educ., 3, 97, https://doi.org/10.1007/s44217-024-00189-5

  2. Hassani, A., Smith, P., Shokri, N. (2024). Negative Correlation between Soil Salinity and Soil Organic Carbon Variability, Proc. Nat. Acad. Sci., 121 (18) e2317332121, https://doi.org/10.1073/pnas.2317332121

  3. Sobhi Gollo, V., González, E., Elbracht, J., Fröhle, P., Shokri, N. (2024). Soil salinization due to saltwater intrusion in coastal regions: The role of soil characteristics and heterogeneity, InterPore J., 1(1), ipj260424–6, https://doi.org/10.69631/ipj.v1i1nr15

  4. Aminzadeh, M., Friedrich, N., Narayanaswamy, S.G., Madani, M. Shokri, N. (2024). Evaporation loss from small agricultural reservoirs: An overlooked component of water accounting, Earth’s Future, 12, e2023EF004050, https://doi.org/10.1029/2023EF004050

  5. Davydzenka, T., Tahmasebi, P., Shokri, N. (2024), Unveiling the Global Extent of Land Subsidence: The Sinking Crisis, Geophys. Res. Lett., 51, e2023GL104497, https://doi.org/10.1029/2023GL104497

  6. Vogelbacher, A., Aminzadeh, M., Madani,K., Shokri, N. (2024). An analytical framework to investigate groundwater‐
    atmosphere interactions influenced by soil properties. Water Resources Research, 60,
    e2023WR036643. https://doi.org/10.1029/2023WR036643

  7. Hohenegger, C., Ament, F., Beyrich, F., […], Shokri, N., […], Wolz, K. (2023). FESSTVaL: the Field Experiment on Submesosale Saptio-Temporal Variability in Lindenberg, Bull. Am. Meteorol. Soc., 104 (10), E1875-E1892, https://doi.org/10.1175/BAMS-D-21-0330.1

  8. Aminzadeh, M., Or, D., Stevens, B., AghaKouchak, A., Shokri, N. (2023). Upper bounds of maximum land surface temperatures in a warming climate and limits to plant growth. Earth's Future, 11, e2023EF003755, https://doi.org/10.1029/2023EF003755

  9. Sepehrnia, N., Gorakifard, M., Hallett, P.D., Hajabbasi, M.A., Shokri, N., Coyne, M. (2023). Contrasting transport and fate of hydrophilic and hydrophobic bacteria in wettable and water-repellent porous media: straining or attachment?, Colloids Surf. B: Biointerfaces, 228, 113433, https://doi.org/10.1016/j.colsurfb.2023.113433

  10. Jafarian, K., Kayhania, M.H., Nazari, M., Ghorbanbakhsh, B., Shokri, N. (2023), WAG injection in porous media: A microfluidic analysis, Chem. Eng. Res. Des., 193, 649-659, https://doi.org/10.1016/j.cherd.2023.03.035

  11. Nevermann, H., AghaKouchak, A., Shokri, N. (2023). Sea level rise implications on future inland migration of coastal wetlands, Glob. Ecol. Conserv., 43, e02421, https://doi.org/10.1016/j.gecco.2023.e02421

  12. Pak, T., Rabbani, H., Raeini, A., Shokri, N. (2023), Effects of pore-morphology on multiphase fluid displacement in porous media – A high resolution modelling investigation, ACS Omega, 8, 4, 3889–3895, https://doi.org/10.1021/acsomega.2c06295

  13. Nevermann, H., Gomez, J.N.B., Fröhle, P., Shokri, N. (2023), Land loss implications of sea level rise along the coastline of Colombia under different climate change scenarios, Clim. Risk Manag., 39, 100470, https://doi.org/10.1016/j.crm.2022.100470

  14. Jannesarahmadi, S.; Aminzadeh, M., Raga, R., Shokri, N. (2023), Effects of microplastics on evaporation dynamics in porous media, Chemosphere, 311, 137023, https://doi.org/10.1016/j.chemosphere.2022.137023

  15. Shokri, N., Stevens, B., Madani, K., Grabe, J., Schlüter, M., Smirnova, I. (2023), Climate Informed Engineering: An essential pillar of Industry 4.0 transformation, ACS Eng. Au, 3, 1, 3–6, https://doi.org/10.1021/acsengineeringau.2c00037

  16. Mahdaviara, M., Sharifi, M., Bakhshian, B., Shokri, N. (2022), Prediction of Spontaneous Imbibition in Porous Media Using Deep and Ensemble Learning Techniques, Fuel, 329, 125349, https://doi.org/10.1016/j.fuel.2022.125349

  17. Shojaei, M.J., Or, D., Shokri, N. (2022), Localized delivery of liquid fertilizer in coarse textured soils using foam as carrier, Trans. Porous Med., https://doi.org/10.1007/s11242-022-01820-5

  18. Vorhauer-Huget, N., Shokri, N. (2022), 30 years of pore network modeling in drying, Dry. Technol., 40:4, 689-690, https://doi.org/10.1080/07373937.2022.2033422

  19. Alexander, S., Barron, A.R., Denkov, N., Grassia, P., Kiani, S., Sagisaka, M., Shojaei, M.J., Shokri, N. (2022). Foam generation and stability: Role of surfactant structure and asphaltene aggregates, Ind. Eng. Chem. Res., 61, 1, 372–381, https://doi.org/10.1021/acs.iecr.1c03450

  20. Shih, Y.H., Huang, Q.Z., Lamorski, K., Hsu1, S.Y., Hu, M.C., Tsao, C.W., Sławiński, C., Shokri, N. (2021), Euler Characteristic during Drying of Porous Media, Dry. Technol., 40:4, 781-795, https://doi.org/10.1080/07373937.2021.2007946

  21. Shokri-Kuehni, S.M.S., Sahimi, M., Shokri, N. (2021), A personal perspective on prediction of saline water evaporation from porous media, Drying Technology, 40 (4), 691-696, https://doi.org/10.1080/07373937.2021.1999256

  22. Hassani, A., Azapagic, A., Shokri, N. (2021). Global Predictions of Primary Soil Salinization Under Changing Climate in the 21st Century, Nat. Commun., 12, 6663. https://doi.org/10.1038/s41467-021-26907-3

  23. Nooraiepour, M., Masoudi, M., Shokri, N., Hellevang, H. (2021), Probabilistic Nucleation and Crystal Growth in Porous Medium: New Insights from Calcium Carbonate Precipitation on Primary and Secondary Substrates, ACS Omega, 6, 42, 28072–28083, https://doi.org/10.1021/acsomega.1c04147

  24. Bakhshian, S., Rabbani, H.S., Shokri, N. (2021). Physics-driven investigation of wettability effects on two-phase flow in natural porous media: Recent advances, new insights, and future perspectives, Transp. Porous Med., 140, 85–106, https://doi.org/10.1007/s11242-021-01597-z

  25. Shojaei, M.J., Meheust, Y., Osman, A., Grassia, P.,  Shokri, N. (2021). Combined Effects of Nanoparticles and Surfactants upon Foam Stability, Chem. Eng. Sci., 238, 116601, https://doi.org/10.1016/j.ces.2021.116601

  26. Hassani, A., Azapagic, A., Shokri, N. (2020). Predicting Long-term Dynamics of Soil Salinity and Sodicity on a Global Scale, Proc. Nat. Acad. Sci., 117(52), 33017-33027, https://doi.org/10.1073/pnas.2013771117

  27. Osman, A., Goehring, L., Stitt, H., Shokri, N. (2020). Controlling the drying-induced peeling of colloidal films, Soft Matter, 16, 8345 - 8351, https://doi.org/10.1039/D0SM00252F

  28. Bakhshian, S., Rabbani, H.S., Hosseini, S.A., Shokri, N. (2020). New Insights into Complex Interactions Between Heterogeneity and Wettability Influencing Two-Phase Flow in Porous Media. Geophys. Res. Lett., 47, e2020GL088187, https://doi.org/10.1029/2020GL088187​​​

  29. Shokri-Kuehni, S.M.S., Raaijmakers, B., Kurz, T., Or, D., Helmig, R., Shokri, N. (2020). Water Table Depth and Soil Salinization: From Pore-Scale Processes to Field-Scale Responses. Water Resour. Res., 56, e2019WR026707, https://doi.org/10.1029/2019WR026707 

  30. Hassani, A., Azapagic, A., D'Odorico, P., Keshmiri, A., Shokri, N. (2020). Desiccation crisis of saline lakes: A new decision-support framework for building resilience to climate change. Science of the Total Environment, 703, 134718, https://doi.org/10.1016/j.scitotenv.2019.134718

  31. Akbarzadeh, M., Rashidi, S., Keshmiri, A., Shokri, N. (2020). The Optimum Position of Porous Insert for a Double-Pipe Heat Exchanger Based on Entropy Generation and Thermal Analysis. J. Therm. Anal. Calorim., 139, 411–426, https://doi.org/10.1007/s10973-019-08362-x

  32. Shojaei, M.J, Rodriguez de Castro, A., Meheust, Y., Shokri, N. (2019). Dynamics of foam flow in a rock fracture: Effects of aperture variation on apparent shear viscosity and bubble morphology. J. Colloid Interface Sci., 552, 15, 464-475, https://doi.org/10.1016/j.jcis.2019.05.068

  33. Shokri, N., Prat, M., Coussot, P. (2019). Saline Water Evaporation from Porous Media. Trans. Porous Med., 128(3), 857-859, https://doi.org/10.1007/s11242-019-01290-2

  34. Bakhshian, S., Hosseini, S.A., Shokri, N. (2019). Pore-scale characteristics of multiphase flow in heterogeneous porous media using the lattice Boltzmann method. Sci. Rep., 9, 3377, London: Nature Publishing Group, https://doi.org/10.1038/s41598-019-39741-x

  35. Guo, J., Chen, M., Huang, Y., Shokri, N. (2019). Salinity effects on ultrasound-assisted hot air drying kinetics of sewage sludge. Thermochim Acta., 678, 178298, https://doi.org/10.1016/j.tca.2019.05.013

  36. Aboufoul, M., Shokri, N., Saleh, E., Tuck, C., Garcia, A. (2019). Dynamics of water evaporation from 3D printed porous asphalt. Constr. Build. Mater., 202, 406-414, https://doi.org/10.1016/j.conbuildmat.2019.01.043

  37. Shojaei, M.J, Osei-Bonsu, K., Richman, S., Grassia, P., Shokri, N. (2019). Foam Stability Influenced by Displaced Fluids and by Pore Size of Porous Media. Ind. Eng. Chem. Res., 58 (2), 1068–1074, https://doi.org/10.1021/acs.iecr.8b05265

  38. Shokri, N. (2019). Comment on "Analytical estimation show low depth-independent water loss due to vapor flux from deep aquifers by John S. Selker [2017]”. Water Resour. Res., 55, 1730–1733. https://doi.org/10.1029/2018WR023347.

  39. Osman, A., Leaper, S., Sreepal, V., Gorgojo, P., Stitt, H., Shokri, N. (2019). Dynamics of Salt Precipitation on Graphene Oxide Membranes. Crystal Growth & Design, 19 (1), 498–505, https://doi.org/10.1021/acs.cgd.8b01597

  40. Rabbani, H.S., Zhao, B., Juanes, R., Shokri, N. (2018). Pore geometry control of apparent wetting in porous media. Sci. Rep., 8, 15729, London: Nature Publishing Group, https://doi.org/10.1038/s41598-018-34146-8

  41. Shokri-Kuehni, S.M.S., Bergstad, M., Sahimi, M., Webb, C., Shokri, N. (2018). Iodine k-edge dual energy imaging reveals the influence of particle size distribution on solute transport in drying porous media. Sci. Rep., 10, 10731, London: Nature Publishing Group, https://doi.org/10.1038/s41598-018-29115-0

  42. Osman, A., Shahidzadeh, N., Stitt, H., Shokri, N. (2018). Morphological transformations during drying of surfactant-nanofluid droplets. J. Ind. Eng. Chem., 67(25), 92-95, https://doi.org/10.1007/s11242-018-1103-5

  43. Osei-Bonsu, K., Grassia, P., Shokri, N. (2018). Effects of pore geometry on dynamics of flowing foam in porous media. Trans. Porous Med., 124(3), 903–917.

  44. Shojaei, M.J., Osei-Bonsu,K., Grassia, P., Shokri, N. (2018). Foam Flow Investigation in 3D-Printed Porous Media: Fingering and Gravitational Effects. Ind. Eng. Chem. Res., 57, 21, 7275-7281, https://doi.org/10.1021/acs.iecr.8b00136

  45. Rabbani, H.S., Or, D., Liu, Y., Lai, C.-Y., Lu, N., Datta, S.S., Stone, H.A., Shokri, N.  (2018). Suppressing viscous fingering in structured porous media. Proc. Nat. Acad. Sci., 115(19), 4833-4838, https://doi.org/10.1073/pnas.1800729115

  46. Leaper, S., Abdel-Karim, A., Faki, B., Luque-Alled, J.M., Alberto, M., Vijayaraghavan, A., Holmes, S.M., Shokri, N., Gorgojo, P. (2018). Flux-enhanced PVDF mixed matrix membranes incorporating APTS-functionalized graphene oxide for membrane distillation. J. Membr. Sci., 554, 309-323, http://doi.org/10.1016/j.memsci.2018.03.013

  47. Dashtian, H., Shokri, N., Sahimi, M. (2018). Pore-network model of evaporation-induced salt precipitation in porous media: the effect of correlations and heterogeneity. Adv. Water Resour., 112, 59-71, https://doi.org/10.1016/j.advwatres.2017.12.004

  48. Osman, A., Goehring, L., Patti, A., Stitt, H., Shokri, N. (2017). Fundamental investigation of the drying of solid suspensions. Ind. Eng. Chem. Res. 56(37), 10506-10513, https://doi.org/10.1021/acs.iecr.7b02334

  49. Lacey, M., Hollis, C., Oostrom, M., Shokri, N. (2017). Effects of pore and grain size on dynamics of immiscible two-phase flow in porous media delineated by micromodels. Energy & Fuels. 31(9), 9026-9034, https://doi.org/10.1021/acs.energyfuels.7b01254

  50. Shokri-Kuehni, S.M.S., Vetter, T., Webb, C., Shokri, N. (2017). New insights into saline water evaporation from porous media: Complex interaction between evaporation rates, precipitation and surface temperature. Geophys. Res. Lett., 44, 5504-5510, https://doi.org/10.1002/2017GL073337

  51. Rabbani, H., Joekar-Niasar, V., Pak, T., Shokri, N. (2017). New insights on the complex physics of two-phase flow in porous media under intermediate-wet conditions. Sci. Rep., 7, 4584, London: Nature Publishing Group, https://doi.org/10.1038/s41598-017-04545-4

  52. Shokri-Kuehni, S.M.S., Norouzirad, M., Webb, C., Shokri, N. (2017). Impact of type of salt and ambient conditions on saline water evaporation from porous media. Adv. Water Resour., 105, 154-161, https://doi.org/10.1016/j.advwatres.2017.05.004

  53. Osei-Bonsu, K., Grassia, P., Shokri, N. (2017). Relationship between bulk foam stability, surfactant formulation and oil displacement efficiency in porous media. Fuel, 203, 403-410, https://doi.org/10.1016/j.fuel.2017.04.114

  54. Osei-Bonsu, K., Grassia, P., Shokri, N. (2017). Investigation of foam flow in a 3D printed porous medium in the presence of oil. J. Colloid Interface Sci., 490, 850-858, https://doi.org/10.1016/j.jcis.2016.12.015

  55. Ou, X., Zhang, X., Lowe, T., Blanc, R., Norouzi Rad, M., Wang, Y., Batail, N., Pham, C., Shokri, N., Garforth, A., Withers, P., Fan, X. (2017). X-ray micro computed tomography characterization of cellular SiC foams for their applications in chemical engineering. Materials Characterization, 123, 20–28, https://doi.org/10.1016/j.matchar.2016.11.013

  56. Mas-Hernandez, E., Grassia, P., Shokri, N. (2016). Modelling foam improved oil recovery within a heterogeneous reservoir. Colloids and Surfaces A: Physicochem. Eng. Aspects, 510, 43-52, https://doi.org/10.1016/j.colsurfa.2016.07.064

  57. Shokri Kuehni, S.M.S., Bou-Zeid, E., Webb, C., Shokri, N. (2016). Roof cooling by direct evaporation from a porous roof layer. Energy and Buildings, 127, 521-528, https://doi.org/10.1016/j.enbuild.2016.06.019

  58. Bergstad, M., Shokri, N. (2016). Evaporation of NaCl solution from porous media with mixed wettability. Geophys. Res. Lett., 43, 4426-4432, https://doi.org/10.1002/2016GL068665

  59. Grassia, P., Torres-Ulloa, C., Berres, S., Mas-Hernandez, E., Shokri, N. (2016). Foam front propagation in anisotropic oil reservoirs. European Physical Journal E, 39 (4), 42, https://doi.org/10.1140/epje/i2016-16042-5

  60. Jambhekar, V.A., Mejri, E., Schröder, N., Helmig, R., Shokri, N. (2016). Kinetic approach to model reactive transport and mixed salt precipitation in a coupled free-flow-porous-media system. Trans. Porous Med., 114(2), 341-369, https://doi.org/10.1007/s11242-016-0665-3

  61. Rabbani, H., Joekar-Niasar, V., Shokri, N. (2016). Effects of intermediate wettability on entry capillary pressure in angular pores. J. Colloid Interface Sci., 473, 34-43, https://doi.org/10.1016/j.jcis.2016.03.053

  62. Rodríguez de Castro, A., Oostrom, M., Shokri, N. (2016). Effects of Shear-thinning Fluids on Residual Oil Formation in Microfluidic Pore Networks. J. Colloid Interface Sci., 472, 34-43, https://doi.org/10.1016/j.jcis.2016.03.027

  63. Keshmiri, A., Osman, K., Benhamadouche, S., Shokri, N. (2016). Assessment of advanced RANS models against large eddy simulation and experimental data in the investigation of ribbed passages with passive heat transfer. Numerical Heat Transfer Part B: Fundamentals, 69(2), 96-110, https://doi.org/10.1080/10407790.2015.1096641

  64. Osei-Bonsu, K., Shokri, N., Grassia, P. (2016). Fundamental investigation of foam flow in a liquid-filled Hele-Shaw cell. J. Colloid Interface Sci., 462, 288-296, https://doi.org/10.1016/j.jcis.2015.10.017

  65. Dehghan, M., Valipour, M.S., Keshmiri, A., Saedodin, S., Shokri, N. (2016). On the thermally developing force convection through a porous material under the local thermal non-equilibrium condition: an analytical study. Int. J. Heat Mass Transfer, 92, 815-823, https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.091

  66. Rodríguez de Castro, A., Shokri, N., Karadimitriou, N., Oostrom, M., Joekar-Niasar, V. (2015). Experimental Study on Non-monotonicity of Capillary Desaturation Curves in a Pore-network. Water Resour. Res., 51(10), 8517–8528, https://doi.org/10.1002/2015WR017727

  67. Shokri, N., Or, D., Weisbrod, N., Prat, M. (2015). Drying of porous media. Trans. Porous Med., 110(2), 171-173, https://doi.org/10.1007/s11242-015-0577-7

  68. Mas-Hernandez, E., Grassia, P., Shokri, N. (2015). Foam improved oil recovery: Modelling the effect of an increase in injection pressure. European Physical Journal E, 38, 67, https://doi.org/10.1140/epje/i2015-15067-6

  69. Osei-Bonsu, K., Shokri, N., Grassia, P. (2015). Foam stability in the presence and absence of hydrocarbons: From bubble-to bulk-scale. Colloids and Surfaces A: Physicochem. Eng. Aspects, 481, 514–526, https://doi.org/10.1016/j.colsurfa.2015.06.023

  70. Jambhekar, V.A., Helmig, R., Schroder, N., Shokri, N. (2015). Free-flow-porous-media coupling for evaporation-driven transport and precipitation of salt. Trans. Porous Med., 110(2), 251-280, https://doi.org/10.1007/s11242-015-0516-7

  71. Shokri, N., Zhou, P., Keshmiri, A. (2015). Patterns of Desiccation Cracks in Saline Bentonite Layers. Trans. Porous Med., 110(2), 333-344, https://doi.org/10.1007/s11242-015-0521-x

  72. Norouzi Rad, M., Shokri, N., Keshmiri, A., Withers, P. (2015). Effects of grain and pore size on salt precipitation during evaporation from porous media: A pore-scale investigation. Trans. Porous Med., 110(2), 281-294, https://doi.org/10.1007/s11242-015-0515-8 

  73. Mas-Hernandez, E., Grassia, P., Shokri, N. (2015). Foam improved oil recovery: Foam front displacement in the presence of slumping. Colloids and Surfaces A: Physicochem. Eng. Aspects, 473, 123-132, https://doi.org/10.1016/j.colsurfa.2014.12.023

  74. Keshmiri, A., Uribe, J., Shokri, N. (2015). Benchmarking of Three Different CFD Codes in Simulating Natural, Forced, and Mixed Convection Flows. Numerical Heat Transfer Part A, 67(12), 1324-1351, https://doi.org/10.1080/10407782.2014.965115

  75. Khosravian, H., Joekar-Niasar, V., Shokri, N. (2015). Effects of flow history on oil entrapment in porous media: An experimental study. AIChE J., 61, 1385–1390, https://doi.org/10.1002/aic.14708

  76. Norouzi Rad, M., Shokri, N. (2014). Effects of grain angularity on NaCl precipitation in porous media during evaporation. Water Resour. Res., 50, 9020-9030, https://doi.org/10.1002/2014WR016125

  77. Grassia, P., Mas-Hernandez, E., Shokri, N., Cox, S.J., Mishuris, G., Rossen, W.R. (2014). Analysis of a Model for Foam Improved Oil Recovery. J. Fluid Mech., 751, 346-405, https://doi.org/10.1017/jfm.2014.287

  78. DeCarlo, K.F., Shokri, N. (2014). Effects of substrate on cracking patterns and dynamics in desiccating clay layers. Water Resour. Res., 50, 304-3051, https://doi.org/10.1002/2013WR014466

  79. DeCarlo, K.F., Shokri, N. (2014). Salinity effects on cracking morphology and dynamics in 3-D desiccating clays. Water Resour. Res., 50, 3052-3072, https://doi.org/10.1002/2013WR014424

  80. Grapsas, N., Shokri, N. (2014). Acoustic characteristics of fluid interface displacement in drying porous media. Int. J. Multiphas Flow, 62, 30-36, https://doi.org/10.1016/j.ijmultiphaseflow.2014.01.011

  81. Shokri, N. (2014). Pore-scale dynamics of salt transport and distribution in drying porous media. Phys. Fluids, 26, 012106, https://doi.org/10.1063/1.4861755

  82. Norouzi Rad, M., Shokri, N., Sahimi, M. (2013). Pore-scale dynamics of salt precipitation in heterogeneous porous media. Phys. Rev. E, 88, 032404. Selected to be displayed on PRE journal web site as a part of "Kaleidoscope", https://doi.org/10.1103/PhysRevE.88.032404

  83. Or, D., Lehmann, P., Shahraeeni, E., Shokri, N. (2013). Advances in soil evaporation physics – a review. Vadose Zone J., 12(4), https://doi.org/10.2136/vzj2012.0163

  84. Rashidi, S., Tamayol, A., Valipour, M.S., Shokri, N. (2013). Fluid flow and forced convection heat transfer around a solid cylinder wrapped with a porous ring. Int. J. Heat Mass Transfer, 63, 91-100,   https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.006

  85. Shokri, N., Or, D. (2013). Drying patterns of porous media containing wettability contrasts. J. Colloid Interface Sci., 391, 135-141, https://doi.org/10.1016/j.jcis.2012.08.074

  86. Sadeghi, M., Shokri, N., Jones, S.B. (2012). A novel analytical solution to steady-state evaporation from porous media. Water Resour. Res., 48, W09516, https://doi.org/10.1029/2012WR012060

  87. Shokri, N., Sahimi, M. (2012). The structure of drying fronts in three-dimensional porous media. Phys. Rev. E 85, 066312. Selected to be displayed on PRE journal web site as a part of "Kaleidoscope", https://doi.org/10.1103/PhysRevE.85.066312

  88. Shokri, N., Sahimi, M., Or, D. (2012). Morphology, propagation, dynamics and scaling characteristics of drying fronts in porous media. Geophys. Res. Lett., 39, L09401, https://doi.org/10.1029/2012GL051506

  89. Norouzi Rad, M., Shokri, N. (2012). Nonlinear effects of salt concentrations on evaporation from porous media. Geophys. Res. Lett., 39, L04403, https://doi.org/10.1029/2011GL050763 

  90. Shokri, N., Salvucci, G. (2011). Evaporation from porous media in the presence of a water table. Vadose Zone J., 10, 1309-1318, https://doi.org/10.2136/vzj2011.0027

  91. Shokri, N., Or, D. (2011). What determines drying rates at the onset of diffusion controlled stage-2 evaporation from porous media?. Water Resour. Res., 47, W09513. Cover of Vol. 47 No. 9 of Water Resources Research, https://doi.org/10.1029/2010WR010284

  92. Shokri, N., Or, D. (2010). Comment on “A simple model for describing hydraulic conductivity in unsaturated porous media accounting for film and capillary flow” by A. Peters and W. Durner. Water Resour. Res., 46, W06801, https://doi.org/10.1029/2008WR007136

  93. Shokri, N., Lehmann, P., Or, D. (2010). Liquid phase continuity and solute concentration dynamics during evaporation from porous media- pore scale processes near vaporization surface. Phys. Rev. E, 81, 046308, https://doi.org/10.1103/physreve.81.046308

  94. Shokri, N., Lehmann, P., Or, D. (2010). Evaporation from layered porous media. J. Geophys. Res., 115, B06204, https://doi.org/10.1029/2009JB006743

  95. Shokri, N., Lehmann, P., Or, D. (2009). Critical evaluation of enhancement factors for vapor transport through unsaturated porous media. Water Resour. Res., 45, W10433, https://doi.org/10.1029/2009WR007769

  96. Shokri, N., Lehmann, P., Or, D. (2009). Characteristics of evaporation from partially-wettable porous media. Water Resour. Res., 45, W02415, https://doi.org/10.1029/2008WR007185

  97. Shokri, N., Lehmann, P., Or, D. (2008). Effects of hydrophobic layers on evaporation from porous media. Geophys. Res. Lett., 35, L19407, https://doi.org/10.1029/2008GL035230

  98. Shokri, N., Lehmann, P., Vontobel, P., Or, D. (2008). Drying front and water content dynamics during evaporation from sand delineated by neutron radiography. Water Resour. Res., 44, W06418, https://doi.org/10.1029/2007WR006385

To top